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Quasiclassical surface of section perturbation theory
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Physics Department, University of Maryland, College Park, Maryland 20742

~Received 16 July 1998!

Perturbation theory, the quasiclassical approximation, and the quantum surface of section method are com-
bined. This gives a new solution of the long-standing problem of quantizing the resonances generically ap-
pearing in classical perturbation theory. Our method is restricted to two dimensions. In that case, however, the
results are simpler, more explicit, and more easily expressed visually than the results of earlier techniques. The
method involves expanding the ‘‘phase’’ of the wave function in powers of thesquare rootof the small
parameter. It gives explicit WKB-like wave functions and energies even for certain systems which classically
show hard chaos. It also gives certain classes of states in some nonintegrable systems. The relationship of the
method to earlier techniques is discussed.@S1063-651X~99!13502-5#

PACS number~s!: 05.45.2a, 03.65.Sq, 72.15.Rn
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I. INTRODUCTION

Quasiclassical approximations to quantum theory h
been valuable not only for numerical purposes but beca
much insight is thereby gained. WKB theory for the on
dimensional case is textbook material. For more genera
tegrable systems, Einstein-Brillouin-Keller~EBK! theory is
used. The Gutzwiller trace formula~GTF! @1#, is the best
known technique applicable to hard chaos systems. A c
pletely quasiclassical method is not available for mixed c
otic systems.

In this paper, we study the quasiclassical quantization
perturbed two-dimensional integrable systems by a new
technique@2#. The method also applies tospecial classes o
statesof certain nonintegrable systems. Our technique is f
mulated on asurface of section,by means of the Bogomolny
operatorT @3#. This effectively reduces the problem to on
dimension and we find directly, by quasiclassical, WKB-li
methods, the eigenfunctions and eigenenergies of the sys

There is a long history of interest in this subject. T
work of Poincare´ on classical perturbation theory eventua
culminated in the KAM theory@1,4,5# of Kolmogorov,
Arnol’d, and Moser and the ideas of chaos theory. Sev
methods, such as that of Birkhoff-Gustavson@6# and the per-
turbed Berry-Tabor trace formula@7#, have been used to
quantize such perturbed systems quasiclassically. We
give a more detailed comparison at the end.

A major feature of perturbed classically integrable s
tems is that the long-time behavior typically shows pha
space structure at all scales of action. This is also true
chaotic systems and perturbed classically integrable sys
have much in common with systems displaying mixed cha
Such phenomena, and their relation to quantum ideas in
ticular examples, have motivated a considerable numbe
recent publications.

Thus we are interested in the case wheretwo small pa-
rameters are present. The first parameter, which is class
is denotede. It gives the scale of the difference between
exactly solvable, integrable case, and the ‘‘perturbed’’ c
of interest. The second parameter is the dimension
Planck’s constant,\, which gives the scale of the leading
order quantum or wave effects.
PRE 591063-651X/99/59~2!/1694~17!/$15.00
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The relationshipbetween these parameters is crucial, a
the theory is exceedingly rich as a result. Although this h
certainly been understood for some time, we have not fo
a very clear discussion in the context of the form
perturbation-quasiclassical approaches used up to now.

The relationship comes from the well known fact, ma
manifest by Feynman’s path-integral formulation, that qua
tum effects smear classical phase-space structures over
of size h52p\. We choose to compare Planck’s consta
with the area of the leading phase-space structure, call iS.
The dimensionlessPlanck’s constant ish/S, which we con-
tinue to callh, i.e., we chooseS as the unit of action. For
example, in a nearly circular billiard of radiusR, S could be
S5pR5\kR, soh/S52p/kR5l/R. Herep is the momen-
tum, k5p/\ the wave number, andl the wavelength of the
particle in the billiard. If the dimensionless Planck is of ord
unity, only the gross features of the classical system are
flected in the quantum properties. But for smalle, or in the
presence of chaos, there are classical structures on s
scales, e.g., on the scale ofeb, whereb ranges from zero to
infinity. If eM/h is of order unity, it means that quantum
systems do not reflect the classical structure at the leveleb

with b.M but are sensitive to structure withb<M . Typi-
cally, the smallest nonvanishingb of interest isb5 1

2 . This
means that there can be striking effects ifAe.\, even if, for
example,e!\!1.

A. Integrable classical systems

An integrable classical system has enough constant
the motion that each classical orbit in 2d-dimensional phase
space lies on ad-dimensional surface in that space. The
surfaces turn out to be tori. Thed constants of the motion ca
be taken to be theaction variables, Ij , j 51, . . . ,d, and they
label theinvariant tori. From now on, we taked52. In these
canonical variables, the HamiltonianH0 depends only on the
actions, i.e.,H0(I 1 ,I 2)5E, whereE is the energy. The con
jugateangle variables, u1 ,u2 , satisfy Hamilton’s equations
u̇ j5]H0 /]I j[v j5v j (I 1 ,I 2). The angle variables fix the
point on a given invariant torus. We shall also assume
avoid certain complications, a principle of ‘‘sufficient non
linearity,’’ which posits that the winding numberv1 /v2 is
1694 ©1999 The American Physical Society
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PRE 59 1695QUASICLASSICAL SURFACE OF SECTION . . .
not too constant asI 1 and I 2 are varied at fixedE. We also
often use two other constants equivalent to theI ’s, usuallyE
and the winding number.

B. Poincaré surface of section

A Poincarésurface of section, SS, is a phase-space
face through which all tori of interest pass, once and o
once. In action angle variables, or their equivalent, we u
ally take the surfaceu250, E fixed. Figure 1 illustrates such
a surface. A given orbit crosses the SS each timeu2 is a
multiple of 2p. Givenu18 and I 18 whenu250, the dynamics
predicts a new (I ,u)5T(I 8,u8) at the next intersection of th
orbit with the SS.~From now on, we call the variables on th
SS simplyI ,u, without subscripts.! T is called thesurface of
section mapand of course it depends onE. For an integrable
system,I 5I 8, u5u812pv1 /v2 . For a nonintegrable sys
tem, I is not constant.

The surface of section is usually displayed in a graphI
versusu, for 0<u,2p, and with points 0,2p identified.
The intersection of the invariant torusI 5const with the sur-
face of section is the horizontal lineI 5const on this graph.

The surface of section map is conveniently given by
generating function. This is an actionS(u,u8), such thatI
5]S(u,u8)/]u, I 852]S(u,u8)/]u8. In the integrable case

S~u,u8!5S0~u2u8!5~u2u8!I 112pI 2 , ~1!

where the actions are regarded as functions ofu2u8
52pv1 /v2 andE. We note thatS is just the integral*p dq
along the trajectory from one surface of section crossing
the next.

Under perturbation,S becomes

S~u,u8!5S0~u2u8!1eS2~u,u8!1e2S41••• . ~2!

Another way of describing the perturbation is to give
Hamiltonian

H5H0~ I 1 ,I 2!1eH2~ I 1 ,I 2 ,u1 ,u2!1e2H41••• , ~3!

where the perturbation is periodic in the angles. There is
fundamental difficulty in using perturbation methods to fi
S2 given, say,H2 , since the calculation involves only sho
orbits.

FIG. 1. Schematic of the definition of surface of section. A
orbit goes around the hole once and advances by an a
2pv1 /v2 on the SS.
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C. Quantum surface of section method

Our theory is expressed in terms ofS. Bogomolny@3# has
shown~without requiringe small! that thesurface of section
transfer operatoror kernel

T~u,u8!5S 1

2p i\

]2S~u,u8!

]u]u8
D 1/2

expS i

\
S~u,u8! D ~4!

can be used to find the energy levels of a system, in qu
classical approximation, although generally the solution
not very explicit. We mention some of the main results b
low. Bogomolny’s method is by no means restricted to a
tion angle variables or any particular surface of secti
There is a large literature@8,9# exploiting and verifying this
technique. We call this thequantum surface of sectio
method.

We shall find that using Eq.~2! in Eq. ~4! and exploiting
the small parametere allows a rather complete and explic
solution of the quantum problem.

D. KAM theory

Although our theory is also applied to non-KAM cases,
naturally reproduces some of the main results of KA
theory, although no attempt is made at rigor. We paraphr
KAM theory as follows. A HamiltonianH5H01eH2 is as-
sumed, whereH2 is a suitably nice function ofI j ,u j . The
original invariant tori which arerational, or equivalently
resonant,are destroyed, as well as those in their immedi
vicinity. The winding numberv1 /v2 of such a torus is a
rational,p/q. Any orbit on such a torus isperiodic.

TheAe characteristically appears. Namely, within a wid
in action,AeI pq about the rational torus, the neighboring to
both rational and irrational, are destroyed or modifi
strongly. HereI pq is a characteristic classical scale of acti
associated with thepq torus, which vanishes rapidly fo
largeq. We will find an expression forI pq .

The rational tori are dense, but since(pqI pq,`, the total
volume in which the original invariant tori are destroyed is
small but finite fraction of phase space, proportional toAe.
The rest of the tori, the KAM set, remain invariant and a
only slightly modified under perturbation. This is the ma
result of KAM theory.

The destroyed tori are largely replaced bynew invariant
tori with a new topology. Separating these new tori from o
another and from the KAM set is a separatrix region which
a chaotic homoclinic tangle. The phase-space scale of
stochastic region is very small@5#, namely of order
exp(21/Ae), so our perturbation theory cannot deal with

These characteristics are illustrated in the surface of s
tion plot of Fig. 2, which show, for the ‘‘smoothed stadium
model specified in Sec. II B, the intersections of invariant t
with the surface of section, which we call invariant curves
loops. The largest resonant islands replace thepq51,2 un-
perturbed torus and its neighbors to a widthAe. The width of
the 7,16 islands, for example, is much smaller. The ‘‘wav
on which these islands are riding scales withe, rather than
Ae. Also shown is an invariant loop which is weakly pe
turbed, with a winding number corresponding to the gold
mean. Several separatrix stochastic regions are also sh

le



nd

ils
.

gy

be
n
a
a

i-

ar
l

o-
t

ke
ep

fin
t

ere
e is
s
ter
bil-
oth
usu-
be

ms
all

m

s.
f

la

ati-
nt.

en-

e
-
s a
f
ow-
as,
’’

ix,
od

c-

fi-
the

e in

-
ad-
e

io

is
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In the process of solving the quantum problem we fi
simple approximate expressions for the loops of Fig. 2.

The appearance of the square rootAe is generic in the
sense that it occurs when the second derivativeS09(u) does
not vanish at a value ofu5Qpq52pp/q explained further
below. It is easy to construct examples for which this fa
Our method can be generalized to deal with such cases

II. PREVIEW OF MAIN RESULTS

In many cases, we find explicit formulas for all ener
levels and wave functions to leading order in\. The equa-
tion we solve, approximately, isc5Tc, or

c~u!5E du8T~u,u8;E!c~u8!, ~5!

where T is the Bogomolny operator. This equation can
solved only if E, on whichT depends parametrically, is o
the spectrum or more precisely is on a quasiclassical
proximation to the spectrum. There generally exists an ex
operator or kernelK to which T is a quasiclassical approx
mation, for which this procedure gives exact answers@9#.

For billiards, with the boundary as SS, Eq.~5! is the qua-
siclassical approximation to the equation of the bound
integral method, andc is the normal derivative of the usua
wave functionC(r … on the boundary. There is a known pr
cedure to findC given c. If this procedure is carried ou
quasiclassically, one finds thatC is a generalization of the
Born-Oppenheimer or adiabatic approximation, which ma
an ansatz for the wave function. We give these results s
rately @10#. However,c contains most of the information
desired rather directly, and it is not necessary as a rule to
C. In fact, there are many ways available to represen
complex function of two variables, andc is a useful one
even in nonperturbative contexts.

These results rely on\!1, e!1, andeM /2/\!1, for an
appropriateM. The largest possible value ofM depends on
the problem, but in this paper we shall usually takeM53
or 4.

FIG. 2. Invariant loops, the intersection of the surface of sect
with the invariant tori and separatrices, showing the scaleAe of
resonances, the scalee of the ‘‘golden mean’’ torus in the KAM
set, and, not to scale, secondary resonances. The system
‘‘smoothed stadium’’ with parameterse50.1, h50.19.
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There are also applications to interesting cases wh
some, but not all, states and energies are found, and ther
no explicit small parametere. Rather, for the class of state
where the method works, there is an implicit small parame
which appears. The bouncing ball states in the stadium
liard and the whispering gallery states of general smo
convex billiards are cases of this type. These cases are
ally connected to an adiabatic approximation and will
discussed in more detail elsewhere.

Our method can be applied to a number of proble
which have recently been studied in the literature. We sh
list these at the end of this paper.

III. OUTLINE OF THE METHOD

A. Bogomolny integral equation

According to Bogomolny, the energy levels of the syste
are given in quasiclassical approximation~QCA! @3# by so-
lutions E5Ea of

D~E!5det„12T~E!…50. ~6!

This equation is usually approached in one of three way
~i! The imaginary part of the logarithmic derivative o

D, d ln(D)/dE, can be expanded in traces of powers ofT,
which yields, for example, the Gutzwiller trace formu
~GTF!, if all periodic orbits are isolated and unstable@3#. The
original derivation of these results was fairly difficult@1#,
and it had the defect that the resulting sum was mathem
cally rather ill-defined, since it is not absolutely converge
The organization of the series by theT operator groups to-
gether orbits coming from the same power ofT and at least
yields a series which either converges or diverges. IfT is
integrable, this gives the Berry-Tabor result@32#, and in the
present case, it gives the perturbed Berry-Tabor results m
tioned above@7,11,12,32#.

~ii ! The Fredholm determinantD may be expanded by th
rules of Fredholm theory@3,9#, giving an absolutely conver
gent expression, which in quasiclassical approximation i
finite sum. An important improvement uses the unitarity oT
to make each term in this sum real. The same traces of p
ers ofT and periodic orbits appear as in the trace formul
but organized into ‘‘pseudo-orbits’’ or ‘‘composite orbits.
This is the main result of ‘‘resummation’’ of the GTF
@3,13,14#.

~iii ! The kernelT may be represented by a discrete matr
and numerically diagonalized. This method gives very go
results@8#.

Our seemingly more difficult technique finds wave fun
tions c satisfying Eq.~5! which can be done only forE
5Ea . Our method is tractable only if the orbits, or a suf
ciently large subset of orbits, are nearly nonisolated, as is
case for a perturbed integral system. The integral is don
the stationary phase@SF# approximation.

This problem is naturally generalized to

Tc5eivc ~7!

which can be solved for allE, andE is regarded as a param
eter. This allows a study of perturbed quantum maps in
dition to two-dimensional autonomous systems. The phasv
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PRE 59 1697QUASICLASSICAL SURFACE OF SECTION . . .
will be a function ofE and usually it is rather easy to solv
the equationv(E)52pn which gives theE values such tha
a solution of Eq.~5! exists.

Using Eqs.~4! and ~2!, for e50 a solution of Eq.~5! is
c05eil u. The SF point is u85u2Q l , and the action for
which this occurs isI 15\ l . If Q l is nearQpq52pp/q, for
q not too large, this solution will be near a rational toru
which is strongly perturbed. If not, a weaker effect from t
perturbation is expected. In general,l will be large, inversely
proportional to\, but the casel 50 is also very interesting
We refer tol as the ‘‘angular momentum.’’

We construct a solution of the full problem from fun
tions of the formc5c0 exp„ia f (u)/\…, wheref 8;1 anda
determines the rate of variation of the phase. On the assu
tion, appropriate for the resonant case, thate!a!1, it turns
out thata;Ae, while a;e is correct for the nonresonan
case. More generally, we will replacea f by a seriesb f1

1b2f 21•••, whereb5Ae, in the resonant case, and by
seriese f 21e2f 41••• in the nonresonant case.

Let integerM be such thatbM21@\ while bM11!\. In
phasesthat are expanded in powers ofb, we must keep terms
up to bM, even though they are much smaller than oth
contributions to the phase. This is because such phases
changes of order unity to the wave function as the angl
varied. In this paper we shall usually considerM52, i.e., we
shall considerb3!\.

In prefactors, we may keep only the leading-order ter
and succeed in making only fractionally small errors. In fin
ing the prefactor of the wave function, we shall need to ke
terms of order unity, which we may regard as being of
same order asbM/\.

B. Example: Perturbed circle billiard

It is particularly easy to give the actionsS0 andS2 in the
case of nearly integrable billiard systems. The simplest c
which nevertheless has been of considerable interest@15–
20#, is a particle in a perturbed circular billiard. The radius
the billiard is writtenr (u)5R01eDR(u). We may suppose
the angular average ofDR vanishes.

We give illustrative numerical results for two cases. T
nearly circular Bunimovich ‘‘stadium’’ @16,19,20# has
DR(u)5usinuu22/p. This has a discontinuous first deriva
tive, invalidating KAM theory, but our theory still works i
e2!\. We also use a ‘‘smoothed stadium,’’DR(u)
5Asin2 u1h22Ch , where the constantCh is chosen to make
the angular average vanish. Fore sufficiently small com-
pared toh, KAM theory applies. We takeh5Ae, which is
large enough for KAM theory to work numerically.

In quantum language, we take unitsR051, \51, particle
mass5 1/2, sok5AE is the dimensionless wave numbe
We usek and the dimensionless 1/\ interchangeably. We
take the billiard boundary]B as SS. The action is

S/\5kL~u,u8!5k@L0~u2u8!1eL2~u,u8!1•••#, ~8!

where L is the chord length between pointsu,u8 on the
boundary. We label boundary points by angle instead of
more customary distance around the perimeter. It is e
to find
,

p-

r
ive
is

s
-
p
e

e,

f

e
sy

L0~u,u8!52Usin
u2u8

2 U ~9!

and

L2~u,u8!5Usin
u2u8

2 U@DR~u!1DR~u8!#. ~10!

C. Pedagogical case: Period-two resonance

We start with the lowest resonance, which is usually p
riod one or two. These are typically the most prominent re
nances. Of course, the definition of what a period is depe
on the choice of surface of section. In standard action-an
coordinates, period one means thatQ1152p[0, that is, the
leading orderSF point is u85u. Similarly period two
means that theSF point isu85u1p[u2p. These periods
turn out to be special becauseSdepends on two coordinates

In addition we assume thatS0 is stationary at this period
i.e., that S08(0)50, or S08(p)50. Then, we may takec0

51, that is, we are expanding about actionI 150, so the
states are entirely made up of ‘‘low’’ angular momenta. Th
means thatc is slowly varying compared with the variatio
of the T operator.

In the example of the circle billiard, there is no period-o
orbit. The simplest periodic orbits passes through the ce
of the circle and there are two bounces per period. From
classical perspective, after a weak perturbation the relev
orbits pass fairly close to the center of the circle. Straig
line orbits of this class, for the billiard of Fig. 3, pass throu
a shaded region at the billiard center. To carry out a pe
gogical example which avoids the necessity of defining
many system-dependent constants, we specialize to the
turbed circle.

FIG. 3. The nearly circular Bunimovich stadium billiardR(u)
5R01eDR(u) with e50.3. The straight line segments have leng
2e. The area of the stadium is the area of the dashed circle w
R051. Straight-line orbits that cross the shaded region are affe
by the l 50 resonance. Several relevant lengths are shown.
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1. Case: ke!1

Assume for the moment thatke is small. In the billiard
example this means that the wavelength is long compare
the shift of the boundaryeDR. Contrary to intuition, as we
mentioned earlier this condition does not suffice to ma
perturbation results trivial. For the latter, it is necessary t
kAe!1.

With this condition, we may expand Eq.~4! as

T~u,u8!.2A k

2p i
~11••• !expS 2ik2

ik

4
du21••• D

3@11 ikeV~u!1•••#, ~11!

where we may takedu5u82u2p as small, i.e.,u8.u
1p. This follows since the stationary phase point isdu
50. „We arrange things, to simplify the notation, so th
u8.u1p rather than u85u2p.… Here V(u)5L2(u,u
1p)5L2(u1p,u)5DR(u)1DR(u1p). The expansion
of the second line of Eq.~11! relies onke small.

We also expand the wave function

c~u8!5c~u1p!1duc8~u1p!1
1

2
du2c9~u1p!1•••

~12!

and the phase

eiv~k!5ei [2k1~1/2!p1v0]~11 ikeEm1••• !, ~13!

whereEm is a shift of eigenphase to be determined andv0 is
defined below. The12 p comes from the prefactor and Gaus
ian integral overdu. Using expressions~11!, ~12!, and~13!
in Eq. ~7!, and doing thedu integral, we find the conditions
for a solution.

First, we must require

c~u1p!5eiv0c~u!. ~14!

In this case,v0 is 0 or p, sincec must be 2p periodic.
Insisting that the leading small terms vanish, we find thac
must also satisfy the equation

2
1

k
c91keV~u!c5keEmc. ~15!

This is a familiar equation, similar to the equation of a qua
tum pendulum, for motion in a periodic potential of streng
k2e5(kAe)2, and unit Planck. Alternatively, we may take
potential whose scale is unity and think of Planck’s const
as\51/(kAe). Thusb5Ae naturally appears.

Equation~15! is such a well known and thoroughly an
lyzed equation that the problem can be considered sol
Analytic methods are available ifkb is small or large. Forkb
small, we can make an ordinary quantum perturbation exp
sion about the starting state of zero angular momentumc
5const.

If kb is large, standard WKB theory makes the ans
c(u)5exp@ikbf(u)1ig(u)1O(1/kb)#, where d f /du5 f 8;1
andg;1. Using this approach gives

f 8~u!56AEm2V~u!, ~16!
to

e
t

t

-

t

d.

n-

z

which isp periodic. IfEm.V for all u, we may quantizeEm
by the condition

kb@ f ~u1p!2 f ~u!#56kbE
0

p

duAEm2V~u!5v012pm.

~17!

We call this the ‘‘rotational’’ case by analogy with the pe
dulum.

The usual next-order analysis givesg(u)5 i 1
2 ln f8(u),

which is customarily written as a prefactor@Em
2V(u)#21/4.

If Em,maxV(u), there will be potential wells, at least tw
in this case, with corresponding librational motion. This m
be treated at various levels of approximation. If tunneli
between the wells is neglected, there will be a quantizat
condition

kbE
um2

um1

duAEm2V~u!5p~m1n!. ~18!

Here, the limits are the angles where the square root v
ishes, the classical turning points, where the leading W
approximation breaks down.

The Maslov indexn, usually 1
2 , is included. It can be

found, for example, by the usual device of approximatingV
by a linear function in the neighborhood of the turnin
points, finding the Airy function solution, and using it t
interpolate between the WKB solutions away from the tu
ing point.

The wave function, sufficiently inside the turning point
is approximately given by

c5~Em2V!21/4 sinS kbE
um2

u

dũAEm2V~ ũ !1
p

4 D .

~19!

This gives a twofold degeneracy, since there are lib
tional levels in two identical wells. If desired, the expone
tially small splitting of these levels can be estimated.

The conditionEm5maxV(u) gives the separatrix of the
motion between librational and rotational motion. Again, t
simplest WKB approximation in the neighborhood of th
separatrix can be corrected by well known if tedious me
ods.

Is it also straightforward to take into account symmetr
which may exist, for example underu↔2u, or time rever-
sal, which guarantees that eigenfunctions of Eq.~5! can be
taken real.

2. Case: ke>1

We now relax the conditionke!1. Instead, we assum
ke>1, while ke3/2!1. Now it is not possible to expand th
exponential representing the perturbation in theT operator.
We can show, however, that the WKB solution of the p
ceding section remains valid.

Expanding the phase of theT operator about the poin
u85u1p, as before, we obtain
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S~u,u8!5kL'2k2
1

4
kdu21ke@DR~u!1DR~u8!#.

~20!

@In Eq. ~20! we replacedu sin 1
2(u2u8)u by 1, its stationary

value, inL2(u,u8).# The WKB ansatz isc5exp ikbf(u). The
same prefactor will also be found, but we ignore it for no

Returning to Eq.~7!, and using this ansatz, we expand
functions of u8 about u1p. This is, f (u8)' f (u1p)
1du f 8(u1p) to order du ~since kb!k) and DR(u8)
'DR(u1p) ~sinceke!kb). Doing the integral reduces Eq
~7! to

exp@ ikb f~u!1 iv~k!#

5 i exp$ i @2k1~kb f8!2/k1keV~u!1kb f~u1p!#%,

~21!

whereV(u)5DR(u)1DR(u1p) as before.
For Eq.~21! to hold, the phases of orderkb must combine

to give a constantv0, i.e., f (u1p)5 f (u)1v0 /kb. At or-
der kb2 solution is possible provided (f 8)21V(u) is a con-
stant, which again we callEm . Thus again

f ~u!56Eu

du8AEm2V~u8!. ~22!

The lower limit can be chosen at our convenience. Not
V(u)5V(u1p)⇒ f (u1p)5 f (u)1const.

Everything goes through exactly as in the preceding s
tion for the rotational states whereEm.maxV. For Em
<maxV, we have librational~or near separatrix! states
where leading order WKB fails in the usual way.

However, we may proceed by almost the standard te
nique. Namely, for angles near the turning point,ke(Em
2V) is small, even ifke is not. In this region,therefore, we
can expand as in Eqs.~11! and ~12!. The solution in this
region interpolates between the regions where WKB is go
With some additional arguments, we obtain the usual W
results for a potentialV, including prefactors and Maslo
indices.

In Fig. 4 we compare the results of this approximati
with exact numerical determination of the wave function
The exact results show the tunneling tails and Airy-functio
like interpolation at the turning points, which we have n
bothered to calculate in WKB theory.

We remark that in this case, the results are independen
the size ofke, that is, there are no corrections to the result
orderke, but only of orderke3/2. Thus we show two wave
functions that cannot be distinguished, with the same va
of kb, but quite different values ofkb2, one smaller than
unity, the other larger.

We remark that thedu integral is effectively over a width
of order 1/Ak. However, the center of the effective windo
of integration is not atdu50, if we take into account the
existence off, but rather atdu.2Ae f 8. This shift will be
small compared with the width ifAe!A1/k, or ke!1. Thus
the term inc8 of Eq. ~12! does not contribute forke!1. If
ke>1, that condition does not hold, but in the turning po
region where we are expanding, the shift is small becausf 8
is small.
.
l

e

c-

h-

d.

.
-
t

of
f

e

t

Thus, we conclude that, even ifke>1, so thatkAe@1,
the usual WKB solution of Eq.~15! also solves Eq.~7!.

D. Classical interpretation

We now give some classical implications of these resu
The actionS(u,u8), the phase of theT operator, generate

the surface of section mapT( l 8,u8)→( l ,u) by the equations
l 5]S/]u, l 852]S/]u8. For the distorted circle billiard,
this is explicitly l 52k(u2u81p)/21keDR8(u); l 85
2k(u2u81p)/22keDR8(u8). It is customary to desym-
metrize this map a bit by settingl 5 l̃ 1kDR8(u). Then the
map is

l̃ 5 l̃ 81keV8~u8!,
~23!

u5u82p22 l̃ /k.

This map has been obtained by other methods@16,17#.
If qualitative understanding is the main motivation,Smay

be simplified while keeping important physics intact. For e
ample, we may regard Eq.~20! as exactly defining a map
which we wish to study classically and/or quantally. A nat
ral simplification is to usedu5u82u. It seems natural to
take DR5cosu as the simplest possible periodic perturb
tion, which yields the well known Chirikov-Taylor or stan
dard map@19,21#. Although this choice ofDR does capture
many phenomena of interest, we find that it is not typical
certain senses. We return to this point below.

Let the invariant loop be given by a formulal inv(u). This
function will have to be two-valued if it is defined for a finit
range of angle, and it can be single-valued if it is defin
over the full range of angle. It must satisfy

FIG. 4. Some results for low angular momentum states in
‘‘stadium’’ billiard. The effective potential,V(u)5u sinuu, vs angle.
States and potential are symmetric about zero angle. Librational
rotational states are shown in our ‘‘WKB’’ approximation as we
as the numerically exact case. The zero axis of the state is at W
‘‘energy’’ parameterEm . kAe542.3 is fixed. Inset: angular mo
mentum representation of continuum states centered at angulm
548 andm5168.
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T„l inv~u8!,u8…→„l inv~u!,u….

In terms of the generating function, it must satisfyl inv(u)
5]S(u,u8)/]u and linv(u8)52]S(u,u8)/]u8. Integrating
this relation, and callingF(u)5* l inv( ũ)dũ, we see that

F~u!5S~u,u* !1F~u* !1const, ~24!

where u* (u) is the angle such that]S(u,u* )/]u*
1F8(u* )50.

If S(u,u8)1F(u8) appears as a phase in an integral o
u8, the stationary phase point is of courseu85u* . Thus we
see that we found an approximate invariant loop,l inv(u)
'kAe f 8(u)56kAeAEm2V(u). More generally, this is the
first term in a series expansion forl inv . Therefore,Em is an
approximate constant of the classical motion, which, like
energy, will be quantized.

The loop l inv we have found so far is not truly invarian
because it is approximate. Rather, it will be mapped int
new loopT( l inv)→ l 1(u)Þ l inv(u). The area enclosed by th
two loops is the same, sinceT is area preserving. It is pos
sible to estimate the phase-space area of points insidel 1 but
outside l inv . In the worst case, the area occupied by su
‘‘turnstile’’ points is proportional toe3/2, which is a factore
smaller than the area ofl inv itself. If the turnstile area is
much smaller than\, i.e., if kb3!1, it is reasonable to be
lieve that l inv is a good approximation for the purposes
quantum mechanics. This is trueeven if no true invariant
loop exists.Of course, if a true invariant loop exists, it ma
be possible to make a correction tol inv , i.e., to find a higher-
order approximation to the invariant loop such that the tu
stile area is even smaller. This would then allow us to ta
kb3>1 and still obtain good results.

We thus see that the libration states withEm,maxV, are
to be identified with the resonance islands about the st
fixed points. The rotational states withEm.maxV are dis-
tortions of the unperturbed invariant loopsl inv5const. If
Em@maxV, this distortion is small. However, this approx
mation breaks down at some stage because there wil
higher resonances which must be taken into account.

E. Energy and quasienergy quantization

We have seen that there is a WKB quantization of
approximate classical constant of the motionEm . This leads
to an expression for the quasienergyv, in the circle case, of
Eq. ~7!,

v5v~k!52k1keEm1v01p/2. ~25!

Table I gives a comparison of numerical quasienergies w
those given by this formula for a number of states. The
merical method used is that introduced in Ref.@22# to solve
the standard map. Starting with an approximate wave fu
tion, a long time series is obtained by applying theT operator
repeatedly. Fourier transform of this series yields the eig
phases and eigenfunctions. TheT operator can be applie
very efficiently if it can be factored into a part depende
only onu2u8, and a part whose phase is a sum of a funct
of u and a function ofu8. The latter is not strictly true for the
nearly circular billiard, but it is true to orderb3. Note also
that we are comparing our method to the numerical solu
r

e
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e
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e
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n-
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n

of Eq. ~5!, and not to the numerical solution of the Helmhol
equation. The question of how well theT operator corre-
sponds to the billiard has already been addressed@8#.

The results are quite good, that is, the errors are sm
compared with the separation of the levels. The separatio
of order

ke~Em112Em!.Ae. ~26!

The energy levels are given by choosing values ofk
which solve

v~k!52pn. ~27!

This has solutionsk5kn,m as for the perfect circle~see Table
II !. @For DR50, v52pn reduces to 2k1m2/k1pm5(n
2 1

4)2p, wherem is the angular momentum. This is equiv
lent to Debye’s approximation to Bessel’s function, valid f
k large andm/k small.#

For fixedm, the variation ofv with k from the first term,
2k, of Eq. ~25! dominates. Thus we have

kn11,m.kn,m1p. ~28!

The error in the determination of a given energy level
not, however, small in comparison with the mean spacing
energy ofall the levels. The levels so far found are a sm
fraction of the levels in a given energy range. There
levels belonging to larger angular momenta and smaller
dial wave number in the same range. In terms ofk, the level
spacing of all the levels is about 2/k, which is the order of
the size of the errors committed and is the order of the
solute error of a given level.

TABLE I. Numerical quasienergies and quasienergies cal
lated from the perturbation theory (vPT), compared for states with
differentm, but all belonging to the same period-two resonance.DR
corresponds to the stadium billiard. WKB ‘‘energy’’ parameter
also given,k51000 ande56.131024 are fixed.

m Em14/p v numerical vPT

1 0.2083 5.6199 5.6310
3 0.4321 5.7701 5.7680
5 0.6053 5.8726 5.8741
7 0.7544 5.9661 5.9654
9 0.8878 6.0465 6.0471
11 1.0097 6.1222 6.1218
13 1.1223 6.1904 6.1908
15 1.1272 6.2553 6.2550
17 1.3254 0.0317 0.0319
19 1.4175 0.0885 0.0884
21 1.5040 0.1411 0.1413
23 1.5852 0.1912 0.1911
25 1.6614 0.2376 0.2378
27 1.7327 0.2814 0.2814
29 1.7989 0.3217 0.3220
31 1.8599 0.3592 0.3593
33 1.9152 0.3924 0.3932
35 1.9638 0.4243 0.4229
37 2.0010 0.4461 0.4458
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It would be nice to have a theory giving the energy lev
with absolute accuracy less than the mean level spacing
course. Primak and Smilansky@23# have discussed how thi
might be possible within the framework of quasiclassi
even though the errors made in arriving at theT operator and
doing stationary phase integrals are of order\. This, how-
ever, involves finding the mean density of levels to bet
than leading-order accuracy by a separate calculation,
combining it in a particular way with sums over period
orbits.

Nevertheless, the results we have obtained are very us
and contain nearly all that is desired. The energy levels
classified into groups. Matrix elements of smooth operat
are large only between levels in the same group. The erro
small compared with the spacing of the levels in the sa
group. The overall statistics of the levels on the scale of
mean level spacing as well as long-range correlations of
ergy levels are also given correctly@24#.

F. Wave functions and localization

The ‘‘wave functions’’ are also given to good approxim
tion, as we showed above. Of course, there can be an a
dental degeneracy between energy levels coming from s
angular momenta, such as we have discussed above, an
ergy levels carrying large angular momenta, which we w
calculate below. Then, the true eigenstates will be some
preciable admixture of large and small angular momen
Lazutkin’s rigorous results also allow for this possibility@5#.
However, the matrix elements of theT operator between
widely different angular momentum states are exponenti
small. This means that such accidental degeneracies wi
rare.

In the presence of symmetries, there will be degenera
which are exact in the absence of the exponentially sm
coupling. An example is the states associated with the p
odic wells discussed above. In the presence of time reve
invariance, the states associated with positive angular
menta are degenerate with those of the corresponding n
tive angular momenta, again with very small splitting due
tunneling between the two momentum regions. If desir
this splitting can be estimated within the framework of o
theory. This is not entirely trivial as it requires a study@24#
of ‘‘resonance assisted tunneling’’ which is an analog

TABLE II. Energiesk with different quantum numbersn, but
the samem511, computed numerically and found solving Eq
~25! and ~27! (kPT). e as in Table I.

n Em14/p k numerical kPT

319 1.0108 998.3207 998.3213
318 1.0128 995.1784 995.1789
317 1.0148 992.0358 992.0364
316 1.0169 988.8934 988.8940
315 1.0190 985.7509 985.7515
314 1.0210 982.6085 982.6090
313 1.0231 979.4660 979.4666
312 1.0252 976.3235 976.3241
311 1.0273 973.1810 973.1816
310 1.0294 970.0387 970.0392
s
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‘‘chaos assisted tunneling’’@25#.
The wave function so far found contains only small ang

lar momentum components. This can be seen explicitly
angular momentum representation, determined schematic
from the integral

c l5E du@Em2V~u!#21/4 exp~ ikAe f ~u!2 i l u!. ~29!

If kAe@1, SF may be employed. Then, it is found that on
the neighborhood of the angles solving

kAe f 8~u!5kAeAEm2V~u!5 l ~30!

contribute appreciably. A range ofl centered roughly at
kAeEm and of width of orderkAe maxV can satisfy this
condition, sokAe maxV is a sort of localization length for
this kind of wave function. Note that only librational state
of the lowest resonance have much overlap with zero ang
momentum.

Outside this range, the angular momentum component
the wave function decay exponentially for smoothV. For the
stadium case,V5usinuu, it may easily been seen that th
decay is asl 24, rather than exponential. This makes it ne
essary to use nonstandard definitions of the localiza
length @16,19,20# if statistical results are to be calculated.

Carrying out the integral of Eq.~29! gives an expression

c l5(
ua

uV8~ua!u21/2 exp i S kAe f ~ua!2 lua1na

p

2 D ,

~31!

whereua are the solutions of Eq.~30!.
Notice that, if as expected,V8 has different signs at the

differentua , there will be an additional Maslov phase inde
na distinguishing the two solutions. Also notice that the s
gularity of the prefactor at the classical turning point
angle, whereV(u)5Em , has disappeared. Instead, the ang
lar momentum regions which makeV8 vanish, which are the
turning points in the angular momentum representation,
singular, and should be treated by a technique going bey
the first WKB approximation. This shift of the region o
breakdown of the leading WKB approximation under Four
transform is the basis of Maslov’s treatment@26# of this sub-
ject.

The solutions thus found arelocalized in angular mo-
mentum space. From the point of view of KAM theor
and perturbation theory, this is unremarkable. First,
KAM theory predicts that the classical motion is als
localized as in Eq.~30!. Second, matrix elements of th
T operator in the angular momentum representation
small away from the diagonal. In fact, considerTll 8
5(2p)21**dudu8e2 i l uT(u,u8)eil 8u8, where (l 2 l 8)/k is
of order unity. The u8 integral will be stationary nea
dS0(u2u8)/du5\ l 8, and theu integral will be stationary
neardS0(u2u8)/du5\ l . Thus, there is no stationary phas
point for this rapidly oscillating double integral, and we ca
conclude that the integral is very small.

Such a band diagonal matrixTll 8 is studied in localization
theory @22# and is effectively the subject of the pape
@16,17,19,20# cited earlier. Since the classical long-time b
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havior is diffusive, in the non-KAM cases, the mechanis
for localization was not obvious. If stationary phase arg
ments are sufficient to get the width of the band, as we h
assumed, the problem is solved. The cited papers are
cerned with the non-KAM case thatkeM /2 is sufficiently
large that stationary phase breaks down.

It should be emphasized that our whole theory is based
the assumption, validated self-consistently, that the eig
states are localized in angular momentum.

G. Adiabatic approximation

The full two-dimensional wave function can also be fou
in WKB approximation. This is quite interesting and will b
the subject of a further communication. The basic resul
that the full wave functionC(r ,u) is a generalization of the
wave function used in the Born-Oppenheimer theory.
other words, for the case considered in the present sectio
is something likeC(r ,u)5F(r ;u)c(u), where the ‘‘fast’’
variable isr and the ‘‘slow’’ variable isu. To leading ap-
proximation, theu dependence ofF is parametric: deriva-
tives with respect to theu dependence ofF are negligible.

It is not too surprising that the present method is related
the adiabatic approximation. Our method of stationary ph
systematically orders the phases appearing in the problem
how rapidly they vary. The Born-Oppenheimer approxim
tion distinguishes between rapidly varying and slowly va
ing coordinates. In some cases our method is exactly equ
lent to Born-Oppenheimer. In other cases, our meth
produces adiabatic invariants@10#. These have in the pas
been used to quantize certain states@15,27#. In other cases
we obtain a generalization of the standard adiabatic appr
mations.

IV. HIGHER RESONANCES

We turn to a discussion of the states wherec05exp ilu,
with u l u@1. As we have just remarked, such a state can
communicate directly via theT operator with its negativel
counterpart. It is true that time reversal symmetric syste
will be symmetric underl→2 l , so that true eigenstates wi
be an even or odd mixture of these states. However, the e
and odd eigenstates will be practically degenerate, and
can consider one sign of angular momentum only to get
main effect.

Suppose we wish to find eigenstates centered near an
momentuml. One way is to reduce the problem to the o
just solved by making a sort of gauge transformation,
which the eigenstatesc→eil uc̃, T→e2 i l (u2u8)T̃, and T̃c̃

5c̃. We may then assume thatc̃ is slowly varying.
There are some complications in this case as comp

with the case wherel 50. First, to leading order, the station
ary phase point is given bydS0(u2u8)/du5 l /k, namely at
u2u852Q l , say. However,Q l has no particular relation
ship to 2p, that is, it will be an irrational multiple of 2p,
unlessl is specially chosen.~The negative sign in the defini
tion of Q l is purely for orthographic convenience.! If l is an
integer, this cannot happen except at special symmetry
ues such asl 50.

There are two possibilities. EitherQ l is very close to a
rational multiple of 2p, 2pp/q5Qpq , whereq is not too
-
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big, or it is sufficiently far from such a multiple. It is the jo
of the theory to tell us what ‘‘very close,’’ ‘‘not too big,’’
and ‘‘sufficiently far’’ mean in detail. The resonant case
the one whereQ l is ‘‘close’’ to a rational, the KAM-set case
hasQ l ‘‘far’’ from a rational.

The first case we deal with is that of a resonance of per
q, which involves destruction of the original invariant to
and their replacement by new tori with a different topolog
These are represented on the surface of section by a perq
island chain. The second, nonresonant, case deals with
variant tori which are somewhat distorted by the perturbat
but which keep the same topology.

In the resonance case we consider states whose an
momentum components are not too far froml pq where the
leading stationary phase point corresponding tol 5 l pq is
Qpq . Note thatc̃ will not be 2p-periodic sincel pq is not
generally integer.

The ansatz made before,

c̃5exp„ikb f̃~u!…, ~32!

does not lead to a solution. Indeed, expandingT̃, f̃ about
Qpq , we do theu8 integral and find

exp$ ike@c2 f̃ 8~u1Qpq!
21L2~u,u1Qpq!#%

5e2 iaeiv exp$ ikb@ f̃ ~u!2 f̃ ~u1Qpq!#%. ~33!

Herec is determined from the second derivative ofS0 . The
phasea is obtained by doing theu8 integral. To satisfyT̃c̃

5c̃, we must require

f̃ ~u1Qpq!5 f̃ ~u!1const ~34!

and

c2~ f̃ 8!21L2~u,u1Qpq!5const. ~35!

These two conditions cannot in general be simultaneou
fulfilled. Equation~34! implies thatf̃ 8 is q-periodic, i.e., pe-
riodic with periodQpq , but only a special choice of pertur
bationL2 in Eq. ~35! will be q-periodic, if qÞ2.

We therefore improve the ansatz and take

c̃5exp$ ikd@b f1~u!1b2f 2~u!1•••#%. ~36!

Introducingd522S09(Qpq) simplifies later formulas. Treat
ing b2f 2 as slowly varying, in this order of the calculation
we find the conditions

f 1~u1Qpq!5 f 1~u!1const ~37!

and

f 2~u!2 f 2~u1Qpq!5 f 18
21Wpq~u!2Em , ~38!

where Em is a constant to be determined andWpq(u)
5L2(u,u1Qpq)/d. The constantEm leads to a phase
kdeEm .

Define theq average of a function of angle byF̄q(u)
51/q( r 51

q F(u1rQpq). The Fourier components ofF̄q are
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just those ofF with all components whose index is not d
visible byq discarded. Making aq average of Eq.~38! leads
to

f 1856AEm2V̄q~u!, ~39!

whereV̄q is theq average ofWpq .
The function f 2 cannot be completely determined at th

level, since an arbitraryq-periodic function can be added t
it and not affect Eq.~38!. Calling Vpq5Wpq2V̄q , we can
solve for the remaining part off 2 . This function has no
Fourier components whose index is divisible byq. The solu-
tion of f 2(u)2 f 2(u1Qpq)5Vpq can be made by Fourie
transform of the equation. An explicit solution can also
written

f 2~u!5
21

q (
r 50

q21

rVpq~u1rQpq!. ~40!

This suggests making the following transformation. L
c̃5eiked f2ĉ and consider the corresponding operatorT̂
which may be approximated by

T̂~u,u8!.A kd

2p i
expS 2ikd2

ikd

4
du2D

3exp$ ikde@Wpq~u!1 f 2~u1Qpq!2 f 2~u!#%.

~41!

The second exponential is exp(ikdeV̄q). If kde is small, we
expandĉ as in Eq.~12! above. Thus,ĉ solves the periodic
potential problem with potentialV̄q and effective Planck’s
constant 1/kdAe.

If kde is of order unity or larger, the argument go
through as before, so that we have obtained the solutio
the resonant case. This also gives the prefactors, as bef

We show in Figs. 5~a!–5~c! some invariant loops for
higher resonancespq51,4;7,28. The numerical loops ob
tained by iterating the SS map are compared with the th
retical l inv5 l pq1b f181b2f 28 .

There are several things of note. First, the contribution
f 2 becomes relatively more important for higherq. This is
for two reasons. Most obviously, (eV̄q)1/2 systematically be-
comes smaller with increasingq, and eventually become
smaller thane, so that the small resonance islands ‘float’
a relatively large ‘‘wave’’ supplied byf 2 . Second,f 2 can
itself become rather large. This can be seen from form
~40!, which can become fairly big if the terms in the sum a
‘‘in phase.’’ This effect is most pronounced near a lar
resonance island, e.g., atq52. Then the terme f 28 for p/q
slightly greater than1

2 with q large must be almost as big a
Ae f 18 for q52.

Another remark is that higher-order terms more gener
are relatively more important for largeq. This can be seen in
the results. These deviations are apparent in this cas
rather largeb50.26,b250.07,b350.02. Again this is be-
causeV̄q is becoming smaller, while the higher-order corre
tions presumably remain roughly constant. The observed
t

to
e.

o-

f

la

y

of
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e-

viations are apparently of orderb3. Of course, if kb3 is
small, the quantum results will not be affected by the dev
tions.

The casepq53,28 shows an impressive set of wriggle
coming from f 28 , which are quite well predicted theoret
cally. We have not tried to find the ‘‘best’’ valueEm corre-
sponding to a given classical numericall inv , except by trial
and error. This may contribute somewhat to the discrep
cies. The islands are of different shape, however, and var
height from one island to the next. These effects canno
reproduced in the orderkb2 but are orderkb3 effects.

FIG. 5. Approximate and exact invariant loops at the four
order and twenty-eighth-order resonances. The value ofe is 0.05 in
~a!,~b! and 0.01 in~c!. h is 0.7 in~a!,~b! and 0.19 in~c!. ~a! includes
the corrections to orderb3, while ~b! and ~c! are correct only to
orderb2. Thus we have verified that the main discrepancy betw
~b! and the exact loop is accounted for by the next-order correct
Higher period resonances have relatively, although not absolu
bigger corrections from higher orders inAe.

FIG. 6. The exact and approximate wave functions for the
resonance, withk54032,e56.7931024. The theoretical approxi-
mate wave function isc5cos(kdbf1)sin(lu1kdb2f2). The rapidly
varying dependence onlu is removed by locally averagingc sin lu
~a! andc coslu ~b!.
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In Fig. 6 we show a quantum state for the 1,3 resonan
What is plotted isc̃, that is, the rapidly varying facto
exp ilu is removed.

A. Quantization conditions

The quantization conditions are somewhat modified, si
the central angular momentuml pq is not usually integer. We
require that exp@il pqu1ikdbf1(u)# be 2p-periodic. For the ro-
tational levels,Em.maxV̄q , we have a modified quantiza
tion condition

E
0

2p

duAEm2V̄52p~m1d!/kbd, ~42!

where2d is the fractional part ofl pq .
If there are solutions of

kbdE
um2

um1

duAEm2V̄q~u!5p~m1n!, ~43!

where the integral is between turning points straddling
minimum of the potential,n again being the Maslov index
there will be librational solutions repeatedq times. There are
thenq nearly degenerate states, and the phase shift from
well to the next will be slightly different thanQpq in such a
way as to make the total wave function 2p-periodic.

These quantization conditions make the area of the lo
an integer number multiplied by Planck’s constant plus
correction due to Maslov indices. Thus, it is equivalent
EBK quantization.

B. When the resonant solution is applicable and needed

The crucial scaleI pq of Sec. I D is usually provided by
V̄q , which provides the estimate

I pq5maxuV̄qu. ~44!

We assume without loss of generality thatV̄q has vanishing
mean.

If librational states exist, then we clearly need the re
nant solution. This requiresI pq>q2/k2e.

If V̄q is very small, the smallest rotationalEm is of order
Em;(kbd)22. Thus, if I pq>(kbd)22 we cannot neglect it.
If I pq is much less than this value, we can neglectV̄q and the
states in this angular momentum neighborhood are ca
dates to be treated by methods valid for the KAM set.

We remark on several cases which are distinguished
the way the Fourier components ofL2(u,u1Qpq) behave.

For the example of a deformed circle, ifDR is a pure low
harmonic, or sufficiently close to one, e.g.,DR5cosu or
DR5cos 2u, then V̄q50 for q.2. Of course, it is immedi-
ately recognized that these cases are to first approximati
shifted circle and an integrable ellipse, respectively, so
they can be transformed to a perturbation about an integr
system with perturbation parametere2 rather thane.

From our perspective, ifV̄q vanishes or is sufficiently
unusually small, one should determine if some higher po
of e gives resonant behavior. This is not hard to do in
e.

e

a

ne

s
e

-

i-

y

a
at
le

r
e

simplest cases, but is tedious for more complicated ca
For example, the orderq resonance of the standard map f
smalle will have width parameter proportional toeq/2, since
the effective resonant coupling is (e cosu)q. Cases where the
Fourier expansion ofDR is a finite Fourier series will have a
rather complicated condition which is difficult to treat
generality.

Analytic perturbations usually have Fourier coefficien
which drop off exponentially with index. This leads to a
estimateI pq;cq, with c less than 1. Ifc.e, we can expect
that the treatment given above is adequate and the lead
order expression for the resonance is proportional toAe. If
not, we either have to work out the higher-order effects
take k sufficiently small that we can ignore the resonan
entirely.

Finally, there are the cases with nonanalyticS2 , whose
Fourier coefficients drop off as a power, say. The billia
DR5usinuu hasV̄q;q22, for example, where KAM theory
breaks down completely. We can generally expect
leading-order solution to be valid for these cases. In t
case, the entire phase space is best regarded as filled
resonances@28#, leaving no KAM set.

C. Close to a large resonance

The following issue is to some extent still unresolve
SupposeV̄q is sufficiently large that Eq.~42! holds nontrivi-
ally. Consider, for example, the resonance labeled 15,3
Fig. 2. For values ofEm.maxV̄q , the predicted rotationa
invariant loops are well described by the low order resona
formula, although that formula does not give higher-ord
resonances. AssumingEm large enough to expand inV̄q , the
invariant loop is given byb f181b2f 2'bAEm(12 1

2 V̄q /Em)
1b2f 2 . This may be shown to approximate the nonreson
solution, also calledf 2 but for a nonresonant value ofl,
found in the next section@24#. However, even if one is quite
close to the separatrix, where one expects the resonant
mula to be best, the resonant or nonresonant formula at
appropriatel value is not bad. Even the formula for a highe
order resonance which seemingly lies in a region stron
affected by the big resonance does qualitatively quite w
although there are some small discrepancies.

This seems to present a contradiction. Close to the
resonance, e.g.,p51, q52, a secondary island chain from
high-order resonance follows well a loop given b

bAEm2V̄2 and also a loop with seeming smaller variatio
e f 2 , corresponding to a resonancepq. However, according
to Eq.~40!, f 2 can become quite large for largeq, which can
compensate for the fact thate!Ae.

V. NONRESONANT CASE, QUANTIZATION
OF THE KAM SET

In this case, we start with a value of integer angular m
mentuml, such thatQ l is not resonant. There is no termf 1
and the solution begins withf 2 . The condition forf 2 is ~for
the deformed circle!

f 2~u1Q l !2 f 2~u!5DR~u1Q l !1DR~u!. ~45!
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This may be solved in terms of Fourier components ofDR,
denotedDRr . The result is

f 2~u!5
1

2p (
r

eir Q l11

eir Q l21
DRre

ir u. ~46!

This sum will be well behaved, providedDRr drops off
sufficiently rapidly withr, and is small when the denomina
tor is small. The denominator is small, whenr 5q andQ l is
close to a rationalQpq , with q not too large. The denomina
tor then approximatesi (qQ l22pp). If this condition does
not hold, the resonance treatment of the preceding sect
must be employed.

At this order of the calculation, there is no shift in th
energy levels for the KAM set states.

Formula ~46! has been tested numerically. In Fig. 7 w
plot f 28(u), the derivative of Eq.~46!, and compare it with
the numerical invariant loop, obtained by propagation of
orbit. It is apparent from this that the invariant loops are n
totally smooth and featureless. KAM theory controls the s
gularity of these loops, although they cannot be represe
by a convergent power series. In Fig. 8 we give the co
sponding quantum state which captures most of the num
cally exact results even in this leading order.

VI. HIGHER-ORDER CALCULATIONS

We briefly mention how one goes to higher order in t
calculation. Some details are put in the Appendix. We c
fine attention to the resonant case.

Basically, one makes the ansatz

c5exp$ i @ l pqu81k~b f11b2f 21b3f 31••• !#%. ~47!

FIG. 7. The golden mean invariant torus of the smoothed

liard, approximated to ordere ~solid line!, cos1
2Ql1ef28(u), and nu-

merically exact classical map~dots, 20 000 iterations!. Parameters
aree51024,h5231022. The inset enlarges a cusplike portion
the figure to display the degree of failure of the approximation. T
torus hasQ l52pw5p(A521), and it is ‘‘farthest’’ from a low-
order rational. Such a torus is not really smooth, and is not desc
able by a convergent power series. It is ‘‘transversely smoot
which is enough to control mathematically its properties@5#. One
can pick out the closest resonances, e.g., 5/8, 8/13, etc., given b
Fibonacci series. Presumably, ash is decreased, this is the last toru
remaining in the KAM set.
ns

n
t
-
ed
-

ri-

-

Instead of expandingS0 to second order indu5u82u
2Qpq , f 1 to first order,f 2 to zeroth order, and neglectin
f 3 , we expand, step by step,S0 to the M th order, f 1 to the
(M21)th order, . . . ,f M to the zeroth order, and neglec
f M11 , whereM>2, andkbM11!1. The perturbation, which
we may calleS2(u,u8)1e2S4(u,u8)1•••, is expanded ac-
cording to the same rule. The orderr calculation determines
the nonperiodic part off r and the periodic part off r 21 .

The resulting integral is not done exactly, but by statio
ary phase in the neighborhood ofdu50. The stationary point
is regarded as shifted byDQpq which can be expressed as
power series inb. Thebr term in this shift is bigger than the
width, 1/k, of the effective region in thedu integral if kbr

@1. A sample calculation is done in the Appendix. Figure
shows a case where orderkb3 corrections are included. Evi
dently, turning-point corrections are important in this ord
but we have not bothered finding them.

There are interesting questions about how this met
breaks down if there are unusually large derivatives ofS2 ,
but we shall not address them in this paper.

VII. OTHER PERTURBED INTEGRABLE SYSTEMS

There are an infinite number of integrable systems wh
perturbations can be studied. Examples in the literature
clude coupled anharmonic@29# and Morse oscillators@31#.
Our method must be modified to study coupled harmo
oscillators, usually studied by the Birkhoff-Gustavso
method@6,33#, since the winding number is constant in th
case.

Rectangular billiards in a weak magnetic field, or wi
Aharonov-Bohm flux lines, have been of great recent inter
@34#. These billiards can also be solved by our method, w
new, unexpected, and rather striking results. Basically t
show that the purely quantum phase can give localiza
even though the classical mechanics is totally unaffec
Although Anderson localization has long been known to
an effect of this kind, to our knowledge this is the first e
ample where analytic formulas are given. This case will
published elsewhere.

Another interesting billiard is the weakly deformed rec
angular billiard@35#. As an example of recent interest@36#,

l-

s

b-
’’

the

FIG. 8. Numerically exact and our approximate wave functio
for the parameters of Fig. 7. The factoreil u has been removed an
the real part of the wave function is shown.
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consider the trapezoidal billiard, whose sides consist of thx
axis, 0<x,a, and the vertical segments, 0<y,b2e (x
50) and 0<y,b1e (x5a), and the slightly sloping seg
ment connecting the upper ends of the vertical segments

The results are much the same as before. We just men
what is found foreV̄q . This potential is periodic inx, with
period 2a/q. In one period, the potential is an isosceles
angle ‘‘tent’’ of zero mean and peak absolute valuee/q2.
Note thatx is continued outside the physical region. Th
continuation is similar to using action-angle variables for
problem.

In fact, for any reflection symmetric perturbationDR of
the circular billiard, there is a corresponding perturbation
the rectangular billiard, in which only one side of the billia
is perturbed.

VIII. NO SMALL PARAMETER

In this section we briefly consider some cases wher
class of states of a system can be found, even though the
no small parameter. We will give the details elsewhere.
fact, the first application of the present method was the
cussion of a class of states which turned up in the contex
ray splitting @37#. A second important class of states are t
whispering gallery modes, first discussed by Keller@27#. Our
method easily reproduces these results. Keller’s method
lies on first finding an adiabatic invariant. This invaria
drops out of our approach as a by-product.

Consider the well known example of the standard stad
billiard @38–40#, which has a straight side of length 2a, as in
Fig. 9. The sidea is arbitrary, but not too small. We want t
study the ‘‘bouncing ball’’ states which have low linear m
mentum parallel to these sides, but a highperpendicular
momentum. These states remain between the parallel s
and do not get out into the endcaps.

Reduce the billiard to its upper half by symmetry. Take
nominal integrable system the infinite channel of widthR0
51 as shown. We take as SS the upper boundary of
billiard, and use positionx, measured from the symmetr
point, on the upper channel to label position on the surfac
section. The billiard boundary is described by distancej
from the upper nominal channel,j(x)50, uxu,a, j(x)
'(uxu2a)2/2, uxu.a. The integrable action is, for state
odd under reflection about the horizontal symmetry line,

S0~x2x8!

\
52kA11

1

4
~x2x8!2'2k1

k

4
~x2x8!2.

~48!

States even about this line have the same action with
additional termp\, that is, theT operator has an additiona
overall negative sign for the even states. The change of

FIG. 9. Half of the stadium billiard which is compared to th
straight channel, an integrable system.
on
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of the second derivative, as compared with the circle, me
that the attractive and repulsive regions of the potential
reversed in comparison with the perturbed circle case.
can approximateS2 by

S2~x,x8!52k@j~x!1j~x8!#. ~49!

Set

V~x!52S2~x,x!/k

50, uxu,a ~50!

5~ uxu2a!2, uxu.a. ~51!

We look for a solution

c5exp„ik f ~x!…, ~52!

where f is slowly varying. One finds, upon approximatin
f (x8)5 f (x)1 f 8(x)(x82x),

f 8~x!56AEm2V~x!. ~53!

Thus, we look for a solution of a particle in the potential we
V(x), and with effective Planck’s constant 1/k. If Em is suf-
ficiently small, thenf varies slowly, and the expansion
justified. The possibility of an emergent small paramet
such asEm , allows us to use a perturbation approach.

Of course, it is not difficult to extend these results to de
with cases having an additional small perturbation. For
ample, the flat sides of the stadium might be given so
small wriggles. An example of this type that has been p
lished @41# makes the radius at one end of the stadium b
liard slightly larger than at the other end, so that the stadi
flat sides are not quite parallel. Note that the periodic orb
change their mathematical character drastically if the s
dium sides are tilted. The periodic orbit, trace formula a
proach to these problems is rather difficult@39#.

Another case, Fig. 10, which has been experimentally
alized @42# is the ice cream cone billiard, which is a un
circle for uuu.b, and a triangular shaped region foruuu
,b. This turns out to have essentially the same effect
potential as for the stadium withx→u2p/2 and @2a,a#
→@p2b,b#.

In these cases, our method turns out to be essentially id
tical to the results based on the standard Born-Oppenhe
ansatz used earlier@38,40#. For the ice cream cone billiard

FIG. 10. The ice cream cone billiard with parameterb5p/4.
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PRE 59 1707QUASICLASSICAL SURFACE OF SECTION . . .
the ansatz is a generalization of the customary one. Alte
tively, the full wave function we predict,C(x,y), approxi-
mates the Born-Oppenheimer wave function.

Another large class of states to which our method app
is the region near stable period orbits. The tractability of t
case has been recognized in previous work of course.
example, the Hamiltonian might be expanded near the st
orbit and then be quantized.

IX. COMPARISON WITH PREVIOUS WORK
ON COMBINED QUASICLASSICAL AND

PERTURBATION THEORY

A. General theory

Combined QCA and PT has been used and studied ex
sively. One general scheme is to find approximations for
classical invariant tori, either analytically or numerically, a
then use EBK methods to quantize them.

An important method is that of the Birkhoff-Gustavso
normal form @6,33#. This is closely related to the Darling
Denison form@43#. In this case, the usual starting point
two or more harmonic-oscillator Hamiltonians coupled
terms consisting of polynomials in the displacements a
momenta. Successive canonical transformations elimin
the coupling terms, order by order, in favor of a normal fo
Hamiltonian, which basically consists of products of powe
of the original harmonic oscillators.

The result is complicated in the sense that computer a
bra is needed to find the normal form, and in addition, a P´
technique is employed@44#. Indeed, the result gives an ap
proximation toall, or some large class of invariant tori, n
just the intersection with the SS, inone single formula. The
entire torus is needed to do standard EBK quantization.

Since we find the invariant loops as a by-product of o
approach, it can be regarded as a variation of this alre
existing work. However, we remark that solving the squ
billiard in the presence of a flux line could not be done
Birkhoff-Gustavson, because thereis no classical perturba
tion. Our method gives localized states which are similar
new, quantized, resonant tori, but these new tori do not e
at the classical level.

Also, our method gives much simpler results. We need
find only the invariant loops in the surface of section, and
the whole torus to which an invariant loop corresponds.
do not need to integrate around the torus from one inter
tion with the SS to the next. Rather, knowledge of the ph
v(E) enables us to complete the quantization. Thus
method has the usual advantages of using the surface of
tion. Not only that, we havedifferent formulasfor different
regionsof angular momenta. Thus, our results are compa
tively simple to derive and write down, since it breaks up t
problem into small pieces, rather than finding one com
cated formula describing everything at once.

Although discussion of the convergence of the series
given in the context of Birkhoff-Gustavson@33#, mention is
not made of the relationship of the small parametere to \.
Since the same formula is used to describe all the re
nances, which have different scales, etc., that discus
would be quite difficult.

A related though more numerical approach is to propag
numerically an orbit which lies on an invariant torus@31#.
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Fourier methods then allow a determination of the fund
mental frequencies, thev i ’s, and then the torus itself. Thi
method is quite efficient.

Although the SS technique is often used to display resu
it is seldom used as a calculational tool. The one excep
we have found is the work of Noid and Marcus@45#. Indeed,
they used two surfaces of section, SS1 and SS2, which
the invariant tori in topologically different ways. By numer
cal propagation of an orbit, they found the invariant loopsl 1

and l 2 on these two SS. EBK quantization makes the area
the loops take the formarea15\(n11 1

2 ), area25\(n2

1 1
2 ), assuming the usual1

2 for librational states. In two di-
mensions, the SS, and thus in effect the orbits, depend
two parameters, one of which is taken as the energy. Th
parameters are varied until the areas of the loops have
above relation to integers. Noid and Marcus obtained
merically good results for the energy levels. Use of SS
gave some advantage computationally. The method does
rely on a small parameter, but only on the existence of s
ficiently simple invariant loops.

A different kind of effort@7,11,12,29,30# studies the tran-
sition away from the Berry-Tabor trace formula, valid fo
completely integrable systems ate50, and towards the
Gutzwiller trace formula, usually considered only for ha
chaos. We will show the relation of our work to that in
future submission.

There are also rigorous mathematical results in this fi
@5#. We are not sure how to make a simple statement of w
has been rigorously proved. It seems that Lazutkin has s
ceeded in quantizing the KAM set at the EBK level, and h
shown that the number of levels found is correct. The wa
functions are also correct, up to the possibility discussed
low of accidental degeneracy.

B. Recent applications

In addition to the subject of magnetic effects on squ
billiards @34# and deformed rectangular billiards@36#, there
are a number of papers@15–18# in the recent literature which
have uncovered interesting phenomena in this perturba
case. Indeed, it was this literature which led us to deve
this theory. In these papers, the basic object is the wea
deformed circular billiard described by the functionDR(u)
as in Fig. 3. The older literature@35# treats such boundary
perturbations in more ordinary quantum perturbation theo
valid only for kAe!1.

Some of this work has practical applications in the co
struction of tiny lasers with almost circular resonant cavit
@15#. The caseDR5cos 2u @15,18# has some special feature
in that a nearly circular elliptical billiard has this as i
leading-order term, and such a billiard is integrable. High
order corrections are quite interesting since they are resp
sible for island chains, etc. That is, this case can be thou
of as an integrable elliptical billiard with leading perturb
tion proportional toe2. We reserve a more detailed analys
to future publication, however.

Other work is more concerned with localization theo
@22#. Non-KAM cases were studied which are classically d
fusive, i.e., technically the systems show hard chaos.
existence of a rather complete and analytic solution for la
ke was not suspected, so statistical studies of localiza
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1708 PRE 59R. E. PRANGE, R. NAREVICH, AND OLEG ZAITSEV
and energy level statistics were undertaken with suppor
heuristic arguments. In particular, the nearly circular Bu
movich stadium billiard@16,19,20# was studied.

It is rigorously known@16# that because of the lack of
second derivative, the long-time behavior is diffusive in a
gular momentum space and there are no invariant tori at
A somewhat related case is to takeDR as a ‘‘random’’ finite
Fourier series constrained to haveM maxima and minima
@17#. There is a third, large, parameterM, whose relationship
with k and e must be specified. The possibility of larg
higher derivatives of the perturbation can modify or inva
date KAM theory.

The general interest in the quantum version of these n
KAM cases has been to find changes of wave-function lo
ization behavior as a function of the parameters, and to
terpret these regimes as belonging to different types
dynamical localization. At some large enoughk, the large
derivatives in these cases start to play a role, and statio
phase arguments and perturbation theory breaks down.
contribution of our paper is for values ofk less than this
characteristic magnitude. A detailed study of this breakdo
is underway.

However, to some orderin Ae, for the resonances, ap
proximate invariant tori continue to exist, and we can fi
them and quantize them. If these tori break down at order,
then forke r /2!1, the quantum system acts as if the tori ex
For largerk, quantum mechanics can ‘‘see’’ the dissolutio
of the tori, and our theory no longer applies. This transit
and its interpretation is the theme of several pap
@16,17,19,20#.

This can also be interpreted as the fact that quantum
chanics and its limiting classical mechanics may have q
different long-time behavior. The two approximately coi
cide up to a timet\ , a time usually interpreted as\/D,
where D is the mean level spacing of the quantum lev
which are appreciable in the initial wave packet. Beyond t
time, the classical behavior is irrelevant to the understand
of the quantum behavior. Thus, the long-time classical
havior, which is the focus of most classical theory, can
irrelevant unless it also happens to describe the short-
behavior, t,t\ . Quantum mechanics does not ‘‘care’’
approximate invariant tori are indeed mathematically inva
ant. It only cares that the classical orbit stays close enoug
a torus for long enough that phase interference effects
establish the quantum states.

An explanation @19,20# used in this context is ‘‘can-
torus,’’ which is a Cantor set invariant phase-space struc
replacing an invariant KAM torus which has disappeared
a parameter is changed. Cantori@28# can ‘‘trap’’ for a while
classical orbits, thus influencing the short-time behavior. T
invariance of a cantorus is what makes it interesting a
difficult in the classical context, but this invariance is of n
relevance for quantum systems. Insofar as cantori ‘‘expla
the short-time behavior, they explain some of the quant
integrability even in the absence of classical integrabil
However, in our opinion, the existence of approximate
variant loops is a better and more complete explanation.

X. FUTURE WORK

Several avenues for future work are underway. It will
interesting to see how the perturbation approach bre
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down in some detail, in cases such as the stadium billia
Working out and verifying higher-order effects in detail is
some interest. It would be good to extend the method
arbitrary surfaces of section rather than the special ones
have used. A number of interesting problems are raised
cases such asDR5cos 2u. Other perturbation systems are
interest, for example, coupled quartic oscillators@29#. It is no
doubt possible to extend the method to weakly coupled h
monic oscillators. A general theory of whispering galle
orbits in sufficiently smooth convex billiards@39,37# might
be possible, but would require a betterT operator than we
have used above, since diffraction effects become impor
for short classical skips between nearby boundary poi
Extension tod.2 may be in principle possible but in prac
tice is likely to be difficult. There are interesting numeric
results, for example in ray splitting billiards@37#, that sug-
gest it might be possible to solve the case thattwo or more
orbits contribute to a specificT operator, requiring a sort o
matrix version of our theory. Finally, it could be hoped
use this technique to study states in pseudointegrable
tems, which have nonisolated orbits that, however, do no
on a simple torus in phase space. Many of these projects
underway@24#.

XI. SUMMARY

Weakly perturbed integral Hamiltonian systems in tw
dimensions have been much studied, both classically
quasiclassically. Up to now, the methods employed, altho
effective numerically, did not lend themselves to visualiz
tion and simple formulas. By using surface of section te
niques as generalized to quantum systems by Bogomo
we obtain results very much like familiar results from WK
theory, at least in the leading orders.

The relation of the perturbation parametere, to the di-
mensionless wave numberk, or equivalently to 1/\, is cru-
cial. The size ofke, the number of wavelengths in th
change of a billiard boundary, is not especially important,
resonant states. Rather, the main parameter iskAe. Results
are quite simple ifke3/2 is small. In that case, the derivative
of the perturbation do not enter directly into the solutio
This also means, of course, that for given smalle, there can
be quite large effects proportional toAe. For example, it is
not enough that an optical resonator have ‘‘optically fla
sides, if it is to approximate well a perfect square resona
For nonresonant states, the size ofke determines whethe
ordinary perturbation methods are valid or not.

A first description of what we have done is that we ha
solved Eq.~5! in WKB and stationary phase approximatio
for the wave functions and energy levels as a power serie
Ae, or in e, depending on the phase-space region. We h
a criterion for whether the series should beAe or e. To be a
bit more accurate, we find explicit solutions for the leadi
Ae and first few powers, and provide a procedure wh
rapidly becomes tedious, for the higher orders. In this pa
we concentrated on the leading order or two, and not
issues of the breakdown of the series. The latter is relate
the degree of smoothness of the perturbation.

A second description is in terms of quantum perturbat
theory. We do a quantum perturbation theory about an ini
statec5exp(ilu). However, unlessAe/\!1, this is not an
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ordinary perturbation theory, but rather adegeneratepertur-
bation theory, in which of orderAe/\ unperturbed states ar
mixed, in the resonant case, ore/\ states in the KAM set
case. This can be seen in Fig. 2, when it is realized
unperturbed states are represented by action values spa\
apart. So, we can effectively carry out the diagonalization
the matrix mixing these states in this case. The fact tha
form of degenerate perturbation theory is needed was ap
ently first pointed out by Shuryak@46#, in the case of reso
nances. Degenerate perturbation theory is usually a matt
diagonalizing matrices, but the quasiclassical approxima
lets us avoid that.

A third interpretation of what we do, at least in som
cases, is that we are able to find explicit approximate form
las for the invariant loops. In other cases, we find adiab
invariants. These loops have the topology of circles and
invariant under the surface of section map. The loops
found as a power series ine for tori in the KAM set. We find
explicit formulas for the new, resonant, invariant loops a
power series inAe. We find explicit formulas for the sepa
ratrices in this way also. The loops can be quantized
essence by EBK theory, and the formulation then gives
other quantization of the motion away from the SS. We a
have expressions for the scale of the perturbation aroun
resonant torus,I pq . Having these formulas, we can find th
quasiclassical quantization conditions and the wave fu
tions.

A fourth interpretation is that we have a generalization
adiabatic approximations like the Born-Oppenheim
method. This happens because we have constructed an o
ing of contributions to the phases according to how fast th
phases vary. It is also similar to multiple time-scale analy

We, however, donot find any stochasticity, or any sec
ondary resonance phenomena, since these are smaller
any power ofe. This has the unfortunate implication that o
work does not shed much light on the quantization of mix
chaos. It would indeed be surprising, however, if the qu
tized wave functions of extended stochastic regions
simple analytic expressions. In fact, mixed chaos consist
three regions, a KAM-like region with invariant tori, a regio
presumably strongly chaotic and treatable by the GTF and
improvements, and a transition region between the two.
the transition region which has resisted attempts to quan
it.

Our results are simple and familiar on the one hand,
rather complex on the other. That is, we obtain results o
type familiar from standard WKB theory. But, the results a
complex in the sense that the results of classical KAM the
are complex. Various cases are possible depending on
choice of system. Since the quantum theory must follow
classical up to a certain level of approximation, depend
on \, the quantum results must also be complex in t
sense.
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APPENDIX: e2!\<e3/2

We indicate here how to find the resonant solution
kb3.1, kb2@1 andkb4!1. We expandS0 about the nomi-
nal stationary pointQpq to third order:

S0~u2u8!/\1 l pq~u82u!

.S0~Qpq!/\1 l pqQpq2k
d

4
du21

1

8
kdd1du3.

~A1!

The ordere term is

S2~u,u8!.b2@dV2~u!1dV28~u!du# ~A2!

and the ordere2 term is

S4~u,u8!5db4V4~u!. ~A3!

We have normalized to the second derivative ofS0 which is
written in terms of the constantd. Note thatV28 is not the
derivative ofV2 .

The wave function is

c5exp~2g!exp ikd~b f11b2f 21b3f 31b4f 4!. ~A4!

We expand

f 1~u8!5 f 1~u1Qpq!1du f 18~u1Qpq!1du2f 19~u1Qpq!,

f 2~u8!5 f 2~u1Qpq!1du f 28~u1Qpq!, ~A5!

f 3~u8!5 f 3~u1Qpq!.

We know f 1 and the part off 2 which has no Fourier com
ponents which are multiples ofq. We investigate the condi
tions on the solution which arise at orderkb3.

The stationary phase point of the integral satisfies
equation

2
1

2
du1b f18124d1du21b f19du1b2f 281b2V2850.

The last four terms are of orderb2, while the first two are of
order b, since the leading expression fordu is of orderb.
Thus, we find

du52b f1812b2@24d1~ f 18!212 f 18 f 191 f 281V28#.

The integration is performed, yielding a condition at orderb3

d1f 18
312 f 18

2f 1912 f 18~ f 281V28!5 f 3~u!2 f 3~u1Qpq!1const.
~A6!

Taking theq average of both sides, we have an equat
determiningf̄ 2 , the part off 2 invariant underq average,
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f̄ 2q8 52V̄2q8 2 f 18 f 192
4

3
d1~ f 18!21

c

f 18
. ~A7!

The part of f 3 vanishing underq average is determine
from
cs

in

-

a-

d
8

.

.
.
g
.

s:
f 3~u!2 f 3~u1Qpq!52 f 18~ f 282 f̄ 281V282V̄2q8 !

and f̄ 3 is determined by the next-order condition. Note tha
f 1 is double-valued, so isf 3 . It can therefore change th
shape of the resonance islands.
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