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Quasiclassical surface of section perturbation theory
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Perturbation theory, the quasiclassical approximation, and the quantum surface of section method are com-
bined. This gives a new solution of the long-standing problem of quantizing the resonances generically ap-
pearing in classical perturbation theory. Our method is restricted to two dimensions. In that case, however, the
results are simpler, more explicit, and more easily expressed visually than the results of earlier techniques. The
method involves expanding the “phase” of the wave function in powers ofstiigare rootof the small
parameter. It gives explicit WKB-like wave functions and energies even for certain systems which classically
show hard chaos. It also gives certain classes of states in some nonintegrable systems. The relationship of the
method to earlier techniques is discusd&il063-651X%99)13502-5

PACS numbdrs): 05.45~a, 03.65.Sq, 72.15.Rn

[. INTRODUCTION Therelationshipbetween these parameters is crucial, and
the theory is exceedingly rich as a result. Although this has

Quasiclassical approximations to quantum theory haveertainly been understood for some time, we have not found
been valuable not only for numerical purposes but becausa very clear discussion in the context of the formal
much insight is thereby gained. WKB theory for the one-Pperturbation-quasiclassical approaches used up to now.
dimensional case is textbook material. For more general in- The relationship comes from the well known fact, made
tegrable systems, Einstein-Brillouin-Kell¢EBK) theory is ~ manifest by Feynman's path-integral formulation, that quan-
used. The Gutzwiller trace formuléGTF) [1], is the best tum effects smear classical phase-space structures over areas
known technique applicable to hard chaos systems. A conPf sizeh=2n7%. We choose to compare Planck’s constant
pletely quasiclassical method is not available for mixed chawith the area of the leading phase-space structure, call it
otic systems. The dimensionles®lanck’s constant i8/S, which we con-

In this paper, we study the quasiclassical quantization ofinue to callh, i.e., we chooses as the unit of action. For
perturbed two-dimensionalintegrable systems by a new example, in a nearly circular billiard of radil® S could be
technique[2]. The method also applies &pecial classes of S=pR=7%kR, soh/S=2#7/kR=\/R. Herep is the momen-
statesof certain nonintegrable systems. Our technique is fortum, k= p/# the wave number, andl the wavelength of the
mulated on aurface of sectiorhy means of the Bogomolny particle in the billiard. If the dimensionless Planck is of order
operatorT [3]. This effectively reduces the problem to one unity, only the gross features of the classical system are re-
dimension and we find directly, by quasiclassical, WKB-like flected in the quantum properties. But for smallor in the
methods, the eigenfunctions and eigenenergies of the systepresence of chaos, there are classical structures on small

There is a long history of interest in this subject. Thescales, e.g., on the scale &, where ranges from zero to
work of Poincareon classical perturbation theory eventually infinity. If €“/h is of order unity, it means that quantum
culminated in the KAM theory[1,4,5 of Kolmogorov, systems do not reflect the classical structure at the leafels
Arnol'd, and Moser and the ideas of chaos theory. Severalith 8>M but are sensitive to structure witfB<M. Typi-
methods, such as that of Birkhoff-Gustavgéhand the per- cally, the smallest nonvanishing of interest isB=3. This
turbed Berry-Tabor trace formulf7], have been used to means that there can be striking effect§é>#, even if, for
quantize such perturbed systems quasiclassically. We wikxample,e<#f<1.
give a more detailed comparison at the end.

A r_najor feature of _perturbed plassic_ally integrable sys- A. Integrable classical systems
tems is that the long-time behavior typically shows phase- . .
space structure at all scales of action. This is also true of AN integrable classical system has enough constants of
chaotic systems and perturbed classically integrable systeni@€ motion that each classical orbit inl-limensional phase
have much in common with systems displaying mixed chaosSPace lies on a-dimensional surface in that space. These
Such phenomena, and their relation to quantum ideas in paﬁ_urfaces turn out to _be tori. Thbconst'ants of the motion can
ticular examples, have motivated a considerable number di€ taken to be thaction variables, |, j=1, ... d, and they
recent publications. label theinvariant tori. From now on, we take=2. In these

Thus we are interested in the case whewve small pa- canonical variables, the Hamiltoni&t, depends only on the
rameters are present. The first parameter, which is classic@Ctions, i.e.Ho(l1,12) =E, whereE is the energy. The con-
is denotede. It gives the scale of the difference between anjugateangle variables 6, ,6,, satisfy Hamilton's equations
exactly solvable, integrable case, and the “perturbed” case#;=dHq/dl;=w;=wj(l1,l;). The angle variables fix the
of interest. The second parameter is the dimensionleggoint on a given invariant torus. We shall also assume, to
Planck’s constantk, which gives the scale of the leading- avoid certain complications, a principle of “sufficient non-
order quantum or wave effects. linearity,” which posits that the winding numbes, / w, is
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C. Quantum surface of section method

Our theory is expressed in terms $fBogomolny[ 3] has
shown(without requiringe smal)) that thesurface of section
transfer operatoror kernel

1 280,00\ (i
T(G,@’)Z WW exr<%8(6,0’)) (4)

FIG. 1. Schematic of the definition of surface of section. An
orbit goes around the hole once and advances by an ang
27w, /w, on the SS.

an be used to find the energy levels of a system, in quasi-
Slassical approximation, although generally the solution is

not very explicit. We mention some of the main results be-

low. Bogomolny’s method is by no means restricted to ac-

not too constant ak; andl, are varied at fixedE. We also  tion angle variables or any particular surface of section.
often use two other constants equivalent toltiseusuallyE ~ There is a large literatur,9] exploiting and verifying this

and the winding number. technique. We call this thejuantum surface of section
method.
B. Poincare surface of section We shall find that using Eq2) in Eq. (4) and exploiting

A Poincaf ; ¢ . SS. i h the small parametet allows a rather complete and explicit
oincaresurface of section, SS, is a phase-space sury, tion of the quantum problem.

face through which all tori of interest pass, once and only
once. In action angle variables, or their equivalent, we usu-

ally take the surfac#@,=0, E fixed. Figure 1 illustrates such D. KAM theory

a surface. A given orbit crosses the SS each tiipés a Although our theory is also applied to non-KAM cases, it
multiple of 27r. Given ¢; andl; when6,=0, the dynamics naturally reproduces some of the main results of KAM
predicts a newl(,0) =7(1",0") at the next intersection of the theory, although no attempt is made at rigor. We paraphrase
orbit with the SS(From now on, we call the variables on the KAM theory as follows. A HamiltoniarH=H,+ eH, is as-

SS simplyl, 6, without subscript$.7'is called thesurface of  sumed, wheréH, is a suitably nice function of;,6;. The
section mamnd of course it depends & For an integrable  original invariant tori which arerational, or equivalently

system,|=1", 6=6"+2mw,/w,. For a nonintegrable sys- resonantare destroyed, as well as those in their immediate

tem, | is not constant. vicinity. The winding numberw,/w, of such a torus is a
The surface of section is usually displayed in a graph of rational, p/q. Any orbit on such a torus iperiodic.

versus @, for O<@<2m, and with points 0,2 identified. The e characteristically appears. Namely, within a width

The intersegtioq of the inyariant t_orlu? const With. the sur- i action, Jel »q about the rational torus, the neighboring tori,
face of section is the horizontal lirle=const on this graph. poth rational and irrational, are destroyed or modified
The surface of section map is conveniently given by agirongly. Here pq IS @ characteristic classical scale of action
generating functionThis is an action5(6,6"), such thatl  5ggociated with thepq torus, which vanishes rapidly for
=0S9(6,0')196, 1'=—95(6,6')/6'. In the integrable case, largeq. We will find an expression for,.
" N , The rational tori are dense, but sinEg,l ,,<, the total
S(0,60")=So(0=0")=(6=0") 11+ 27, @ volume in which the original invariant tc%)?i are destroyed is a
small but finite fraction of phase space, proportional/o
where the actions are regarded as functions 6ef ¢’ The rest of the tori, the KAM set, remain invariant and are
=2mw,/w, andE. We note thaSis just the integrafp dq  only slightly modified under perturbation. This is the main

along the trajectory from one surface of section crossing téesult of KAM theory.
the next. The destroyed tori are largely replaced hgw invariant

Under perturbationS becomes tori with a new topology. Separating these new tori from one
another and from the KAM set is a separatrix region which is
a chaotic homoclinic tangle. The phase-space scale of the
S(6,60')=Sg(6—0')+€Sy(0,0')+€*S;+--- .  (2)  stochastic region is very small5], namely of order
exp(—1/\/e), so our perturbation theory cannot deal with it.

h fd ibi h bati . . These characteristics are illustrated in the surface of sec-
Another way of describing the perturbation is t0 give ajon piot of Fig. 2, which show, for the “smoothed stadium”

Hamiltonian model specified in Sec. Il B, the intersections of invariant tori
with the surface of section, which we call invariant curves or
H=Ho(l1,l1,)+eHo(l1,05,61,8,)+ €Hat -+, (3) loops. The largest resonant islands replacepfe 1,2 un-

perturbed torus and its neighbors to a width The width of

the 7,16 islands, for example, is much smaller. The “wave”
where the perturbation is periodic in the angles. There is non which these islands are riding scales withrather than
fundamental difficulty in using perturbation methods to find Je. Also shown is an invariant loop which is weakly per-
S, given, sayH,, since the calculation involves only short turbed, with a winding number corresponding to the golden
orbits. mean. Several separatrix stochastic regions are also shown.
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There are also applications to interesting cases where
some but not all, states and energies are found, and there is
no explicit small parametet. Rather, for the class of states

I o ety ot i where the method works, there is an implicit small parameter
b o oo o d512 which appears. The bouncing ball states in the stadium bil-
o @ © o @ liard and the whispering gallery states of general smooth
S 0p P P e N 77118 convex billiards are cases of this type. These cases are usu-
Tea e ally connected to an adiabatic approximation and will be
~. N ~115,82 discussed in more detail elsewhere.
e A e /\\\ // Our method can be applied to a number of problems
N e \ L eags S which have recently been studied in the literature. We shall
\ //\ \ ' // list these at the end of this paper.
oo L 1 oo Ll VY Lidqp
0 n 2n
0 lll. OUTLINE OF THE METHOD
FIG. 2. Invariant loops, the intersection of the surface of section A. Bogomolny integral equation
with the invariant tori and separatrices, showing the SGEeOf According to Bogomo"‘]y' the energy levels of the System

resonances, the scateof the “golden mean” torus in the KAM_ are given in quasiclassical approximatit@CA) [3] by so-
set, and, not to scale, secondary resonances. The system is t’qtﬁionSEzEa of

“smoothed stadium” with parameters=0.1, »=0.19.
D(E)=def(1-T(E))=0. (6)
In the process of solving the quantum problem we find
simple approximate expressions for the loops of Fig. 2. This equation is usually approached in one of three ways.
The appearance of the square ra@t is generic in the (i) The imaginary part of the logarithmic derivative of
sense that it occurs when the second derivali{d) does D, d In(D)/dE, can be expanded in traces of powersTof
not vanish at a value of=0,,=2mp/q explained further ~which yields, for example, the Gutzwiller trace formula
below. It is easy to construct examples for which this fails.(GTF), if all periodic orbits are isolated and unstaps. The
Our method can be generalized to deal with such cases. original derivation of these results was fairly difficdlt],
and it had the defect that the resulting sum was mathemati-
Il. PREVIEW OF MAIN RESULTS cally rather ill-defined, since it is not absolutely convergent.
] o The organization of the series by tfieoperator groups to-
In many cases, we find explicit formulas for all energy gether orbits coming from the same powerToénd at least
levels and wave functions to leading orderfin The equa- yijelds a series which either converges or divergesT I§
tion we solve, approximately, i¢= Ty, or integrable, this gives the Berry-Tabor resi@g], and in the
present case, it gives the perturbed Berry-Tabor results men-
B , . , tioned abovd7,11,12,32
( 0)—f do'T(6,0";E)¥(0"), (5) (i) The Fredholm determinaill may be expanded by the
rules of Fredholm theor}3,9], giving an absolutely conver-
where T is the Bogomolny operator. This equation can begent expression, which in quasiclassical approximation is a
solved only ifE, on which T depends parametrically, is on finite sum. An important improvement uses the unitarityf of
the spectrum or more precisely is on a quasiclassical ago make each term in this sum real. The same traces of pow-
proximation to the spectrum. There generally exists an exaatrs of T and periodic orbits appear as in the trace formulas,
operator or kerneK to which T is a quasiclassical approxi- but organized into “pseudo-orbits” or “composite orbits.”
mation, for which this procedure gives exact answéils This is the main result of “resummation” of the GTF
For billiards, with the boundary as SS, H§) is the qua- [3,13,14.
siclassical approximation to the equation of the boundary (i) The kernell may be represented by a discrete matrix,
integral method, and is the normal derivative of the usual and numerically diagonalized. This method gives very good
wave function¥ (r) on the boundary. There is a known pro- results[8].
cedure to find¥ given . If this procedure is carried out ~ Our seemingly more difficult technique finds wave func-
quasiclassically, one finds that is a generalization of the tions ¢ satisfying Eq.(5) which can be done only foE
Born-Oppenheimer or adiabatic approximation, which makes=E,. Our method is tractable only if the orbits, or a suffi-
an ansatz for the wave function. We give these results sepgiently large subset of orbits, are nearly nonisolated, as is the
rately [10]. However, ¢ contains most of the information case for a perturbed integral system. The integral is done in
desired rather directly, and it is not necessary as a rule to finthe stationary phases®] approximation.
V. In fact, there are many ways available to represent a This problem is naturally generalized to
complex function of two variables, ang¢t is a useful one .
even in nonperturbative contexts. Ty=€e“y (7
These results rely ofi<1, e<1, andeM?/#<1, for an
appropriateM. The largest possible value M depends on which can be solved for at, andE is regarded as a param-
the problem, but in this paper we shall usually tddle=3  eter. This allows a study of perturbed quantum maps in ad-
or 4. dition to two-dimensional autonomous systems. The phase
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will be a function ofE and usually it is rather easy to solve s
the equatiorw(E) =27n which gives theE values such that
a solution of Eq(5) exists. AR (o)~

Using Eqgs.(4) and(2), for e=0 a solution of Eq(5) is
Yo=e"’. The SO point is '=6—0,, and the action for
which this occurs i, =7%l. If ©, is near® ,,=2mp/q, for
g not too large, this solution will be near a rational torus,
which is strongly perturbed. If not, a weaker effect from the
perturbation is expected. In genedabill be large, inversely
proportional to, but the casé=0 is also very interesting.
We refer tol as the “angular momentum.”

We construct a solution of the full problem from func-
tions of the formy= ¢y exp(i af(0)/%), wheref’~1 anda
determines the rate of variation of the phase. On the assump-
tion, appropriate for the resonant case, th&ta<<1, it turns
out that e~ +/e, while a~ € is correct for the nonresonant
case. More generally, we will replacef by a seriesbf; ~
+b?f,+-- -, whereb= e, in the resonant case, and by a B T
seriesef,+ €?f4+ - - - in the nonresonant case.

FIG. 3. The nearly circular Bunimovich stadium billiaR{ 8)

: M—1s ; M+1
hLet Ir;ltegerM be S%Chdt.hab >ﬁf\vl\\//h||e b K <. In =Ry + eAR(0) with e=0.3. The straight line segments have length
phaseghat are expanded in powersinfwe must keep terms 2e. The area of the stadium is the area of the dashed circle with

M
up to_ b N even though they _arg much smaller than othe_rRO:L Straight-line orbits that cross the shaded region are affected
contributions to the phase. This is because such phases gy the| =0 resonance. Several relevant lengths are shown.

changes of order unity to the wave function as the angle is
varied. In this paper we shall usually considiée=2, i.e., we

shall consideb®<#. NN B
In prefactors, we may keep only the leading-order terms Lo(6,07)=2|sin 2 ©
and succeed in making only fractionally small errors. In find-
ing the prefactor of the wave function, we shall need to keep
terms of order unity, which we may regard as being of the?"
same order abM/#.
B. Example: Perturbed circle billiard L2(0.67)=|sin 2 LAR(O)+AR(6D)]. 19

It is particularly easy to give the actioigy andS, in the
case of nearly integrable billiard systems. The si_mplest case, C. Pedagogical case: Period-two resonance
which nevertheless has been of considerable int¢fest ] o
20], is a particle in a perturbed circular billiard. The radius of = Ve start with the lowest resonance, which is usually pe-

the billiard is writtenr (6) = R,+ eAR(#). We may suppose 'od one or two. These are typically the most prominent reso-
the angular average @R vanishes. nances. Of course, the definition of what a period is depends

We give illustrative numerical results for two cases. The®" the choice of surface of section. In standard action-angle
nearly circular Bunimovich “stadium”[16,19,2Q has Ccoordinates, period one means tiif,=27=0, that is, the
AR(6)=|sing|—2/m. This has a discontinuous first deriva- l€ading orderS® point IS ¢"=6. Similarly period two
tive, invalidating KAM theory, but our theory still works if Means that th&b pointis ¢’ =+ w= ¢— m. These periods
e2<h. We also use a “smoothed stadium,AR(¢) turmnoutto be special becauSalepends on two coordinates.

S _ ; ’ In addition we assume th&, is stationary at this period,
= \Sir? 6+ 77 C,, where t_he constarﬁl_,,_ls chosen to make e, that S,(0)=0, or S[)(w)f)o Then wg g tallake,//
the angular average vanish. Fersufficiently small com- "= ’ : , y 0

pared toz, KAM theory applies. We take= \e, which is =1, that is, we are eXpandi“‘Q ab,,OUt actibp=0, so the
large enough for KAM theory to work numerically. states are entirely made up of “low” angular momenta. This

In quantum language, we take urRs=1, =1, particle means thai) is slowly varying compared with the variation

mass= 1/2, sok=\E is the dimensionless wave number. of the T operator.

We usek and the dimensionless 7l/interchangeably. We In the example of the circle billiard, there is no period-one
take the billiard boundaryB as SS. The action is ' orbit. The simplest periodic orbits passes through the center

of the circle and there are two bounces per period. From a
SIi=KL(60,0")=K[Lo(0—6')+€Lo(6,0)+---1, (8 classical perspective, after a weak perturbation the relevant
orbits pass fairly close to the center of the circle. Straight-
line orbits of this class, for the billiard of Fig. 3, pass through
where L is the chord length between points#’ on the a shaded region at the billiard center. To carry out a peda-
boundary. We label boundary points by angle instead of thgogical example which avoids the necessity of defining too
more customary distance around the perimeter. It is easgany system-dependent constants, we specialize to the per-
to find turbed circle.
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1. Case: k<1 which is 7 periodic. IfE,,>V for all §, we may quantiz&,,

Assume for the moment thate is small. In the billiard PY the condition

example this means that the wavelength is long compared to

the shift of the boundargAR. Contrary to intuition, as we _ el
mentioned earlier this condition does not suffice to make<PLf(¢+ W)_f(a)]_ikbfo dOVER=V(0) = wot2mm.

perturbation results trivial. For the latter, it is necessary that 17
kye<1.
With this condition, we may expand E(#) as We call this the “rotational” case by analogy with the pen-

dulum.
T(6,0")=— \/—(1+ )exp{ 2|k——502 . The usual next-order analysis giveg6)=i3 Inf'(6),

which is customarily written as a prefactofE,,
X[1+ikeV(6)+ - - ay —V(O1 "

If E,<maxV(6), there will be potential wells, at least two
where we may takeS6=6'—6— = as small, i.e.,’=8 in this case, with corresponding librational motion. This may
+ . This follows since the stationary phase pointd8  be treated at various levels of approximation. If tunneling
=0. (We arrange things, to simplify the notation, so thatbetween the wells is neglected, there will be a quantization
0'=0+ 7 rather than ¢’'=6—m.) Here V(6)=L,(6,6  condition
+a)=Ly(0+m,0)=AR(0)+AR(6#+ 7). The expansion
of the second line of Eq.11) relies onke small. Oms

We also expand the wave function ka‘9 dOVE,,—V(0)=m(m+v). (18
m—

1
ry — ’ 2.0
(0" ) =0+ )+ 30y (0+ )+ 5 567y (0+ )+ Here, the limits are the angles where the square root van-

(12) ishes, the classical turning points, where the leading WKB
approximation breaks down.

and the phase The Maslov indexv, usually 3, is included. It can be
found, for example, by the usual device of approximatihg
by a linear function in the neighborhood of the turning
points, finding the Airy function solution, and using it to
interpolate between the WKB solutions away from the turn-
ing point.

The wave function, sufficiently inside the turning points,
is approximately given by

eiw(k):ei[2k+(1/2)77+w0](1+ikeEm+ . .), (13

whereE,, is a shift of eigenphase to be determined ands
defined below. The 7 comes from the prefactor and Gauss-
ian integral overs#. Using expressionéll), (12), and(13)
in Eq. (7), and doing thes6 integral, we find the conditions
for a solution.

First, we must require .

Y(0+ ) =€"“0y( 6). (14) p=(En—V) V4 sin( kbf doVE,,— V() +

Om—

23

19
In this case,wq is 0 or 7, since s must be 2r periodic. (19

Insisting that the leading small terms vanish, we find that

must also satisfy the equation This gives a twofold degeneracy, since there are libra-

tional levels in two identical wells. If desired, the exponen-
1 tially small splitting of these levels can be estimated.
- Ez//’+ keV(0)y=KkeE . (15 The conditionE,,=maxV(6) gives the separatrix of the
motion between librational and rotational motion. Again, the

This is a familiar equation, similar to the equation of aquan—SimpIeSt WKB approximation in the neighborhood of the

tum pendulum, for motion in a periodic potential of strengthseparatr'x can be corrected by well known if tedious meth-
ke=(kye)?, and unit Planck. Alternatively, we may take a ° Ts it also straightforward to take into account symmetries
potential whose scale is unity and think of Planck’s constant 9 y

which may exist, for example und@k— — 6, or time rever-
ash=1/(k\e). Thusb= /e naturally appears.
Equation(15) is such a well known and thoroughly ana- sal, which guarantees that eigenfunctions of &j.can be

lyzed equation that the problem can be considered solveé‘?‘ken real.

Analytic methods are availablelib is small or large. Fokb
small, we can make an ordinary quantum perturbation expan-
sion about the starting state of zero angular momengum We now relax the conditiokke<<1. Instead, we assume
=const. ke=1, while ke®?<1. Now it is not possible to expand the
If kb is large, standard WKB theory makes the ansatzxponential representing the perturbation in Theperator.

() =exdikbf(0)+ig(0)+0O(1/kb)], wheredf/do=f'~1  We can show, however, that the WKB solution of the pre-
andg~1. Using this approach gives ceding section remains valid.

Expanding the phase of the operator about the point

f'(0)==\VE,—V(0), (16) 0’ =0+ m, as before, we obtain

2. Case: k=1
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[In Eqg. (20) we replaced sin3(#—¢')| by 1, its stationary W4a(6) numericat—
value, inL,(#8,0").] The WKB ansatz igy=expikbf(f). The  H WKB

1
S(0,0")= kL~2k—Zk602+ ke[AR(6)+AR(6")].

same prefactor will also be found, but we ignore it for now. - | | Ma(®) P>,
Returning to Eq(7), and using this ansatz, we expand all 2 . / gDl
functions of 8’ about 6+ . This is, f(8')~f(6+m) 5 n/“merlcal ) ~
+56f'(0+7) to order 56 (since kb<k) and AR(8') E 45 (D!
~AR(6+ ) (sinceke<kb). Doing the integral reduces Eq. E4‘ I / \
(7) to 2
EO
expikbf(0) +iw(k)] a00 800 50‘\ 100 150 200
=i exp{i[2k+ (kbf")?/k+keV(0) +kbf(6+ )]}, / : : :
g I 0 w8 /4 3m/8 /2
(21 angle
whereV(0)=AR(6)+AR(6+ ) as before. FIG. 4. Some results for low angular momentum states in the

For Eq.(21) to hold, the phases of ordkb must combine  “stadium” billiard. The effective potentialy(6) =| sin 4, vs angle.
to give a constanby, i.e., f(6+ 7)=f(6)+ wy/kb. At or- States and potential are symmetric about zero angle. Librational and
der kb? solution is possible provided ()?+V(#) is a con-  rotational states are shown in our “WKB” approximation as well

stant, which again we calt,,. Thus again as the numerically exact case. The zero axis of the state is at WKB
“energy” parametelE,,. k\e=42.3 is fixed. Inset: angular mo-
¢ - mentum representation of continuum states centered at angular
f(e)= if do’'VE,,—V(6). (22 — 48 andm= 168.

The lower limit can be chosen at our convenience. Notice Thys, we conclude that, even kie=1, so thatkye>1,
V(0)=V(6+m)=1(6+ m)=1(6)+const. the usual WKB solution of Eq(15) also solves Eq(7).

Everything goes through exactly as in the preceding sec-
tion for the rotational states wherg,>maxV. For E,,
=maxV, we have librational(or near separatrjx states
where leading order WKB fails in the usual way. We now give some classical implications of these results.

However, we may proceed by almost the standard tech- The actionS(6,6’), the phase of th& operator, generates
nique. Namely, for angles near the turning poikg(E,,  the surface of section mafil’,6’)— (I, ) by the equations
—V) is small, even ike is not.In this region,therefore, we |=9S/96, |’ =—9S/90’. For the distorted circle billiard,
can expand as in Eq$1l) and (12). The solution in this this is explicitly |=—k(6— 0’ +m)/2+keAR'(9); |'=
region interpolates between the regions where WKB is good—k(6— 6’ + 7)/2—keAR'(8"). It is customary to desym-
With some additional arguments, we obtain the usual WKBetrize this map a bit by setting=T+kAR’(6). Then the
results for a potentiaV, including prefactors and Maslov map is
indices.

In Fig. 4 we compare the results of this approximation T
with exact numerical determination of the wave functions.
The exact results show the tunneling tails and Airy-function- _
like interpolation at the turning points, which we have not 6=0"—m—2l/k.
bothered to calculate in WKB theory.

We remark that in this case, the results are independent ofpjg map has been obtained by other methidd17.
the size oke, that is, there are no corrections to the result of |5 qualitative understanding is the main motivati@may
orderke, but only of orderke®% Thus we show two wave pe simplified while keeping important physics intact. For ex-
functions that cannot be distinguished, with the same valugmp|e1 we may regard Eq20) as exactly defining a map
of kb, but quite different values okb®, one smaller than \hich we wish to study classically and/or quantally. A natu-
unity, the other larger. ral simplification is to use5¢=6’'— 6. It seems natural to

We remark that th€§0 integral is effectively over a width take AR= cosé as the Simp|est possib'e periodic perturba_
of order 14k. However, the center of the effective window tion, which yields the well known Chirikov-Taylor or stan-
of integration is not ab¢=0, if we take into account the dard map[19,21. Although this choice ofAR does capture
existence off, but rather at56=2\/ef’. This shift will be many phenomena of interest, we find that it is not typical in
small compared with the width ife<\1/k, orke<1. Thus  certain senses. We return to this point below.
the term iny’ of Eq. (12) does not contribute foke<<1. If Let the invariant loop be given by a formulg,(6). This
ke=1, that condition does not hold, but in the turning point function will have to be two-valued if it is defined for a finite
region where we are expanding, the shift is small becdlse range of angle, and it can be single-valued if it is defined
is small. over the full range of angle. It must satisfy

D. Classical interpretation

(23
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TUin(0"),0)— (lin(6), 6). TABLE I. Numerical quasienergies and quasienergies calcu-
lated from the perturbation theorwfy), compared for states with
In terms of the generating function, it must satisfy,(4) differentm, but all belonging to the same period-two resonande.
=95(0,0')/96 and ., (0')=—03S(6,0")/36". Integrating corresponds to the stadium billiard. WKB “energy” parameter is

o~ o~ I = = 74 1
this relation, and calling-(0) = [1;,,(6)d6, we see that also givenk=1000 ande=6.1x10"" are fixed.

F(6)=S(6,0%)+F(6*)+const, (24) m Ent4lm ® numerical wpT
. 1 0.2083 5.6199 5.6310
* * %

vJ\rlrlw:e,r(ee*é)P:(g) is the angle such thatoS(4,6*)/d0 3 0.4321 57701 5 7680
N , . . 5 0.6053 5.8726 5.8741
If S(0,0")+F(6") appears as a phase in an integral over 7 0.7544 5 9661 5 9654

#’, the stationary phase point is of coude= 6*. Thus we ' ' '
yp P 9 0.8878 6.0465 6.0471

see that we found an approximate invariant lobg,(6) 1 10097 61222 6.1218
~ky/ef'(8)=+k\eEn—V(6). More generally, this is the ' : '

first term in a series expansion fhy,. Therefore E,, is an 13 1.1223 6.1904 6.1908
approximate constant of the classical motion, which, like the 15 11272 6.2553 6.2550
energy, will be quantized. 17 1.3254 0.0317 0.0319

The loopl;,, we have found so far is not truly invariant 19 1.4175 0.0885 0.0884
because it is approximate. Rather, it will be mapped into a 21 1.5040 0.1411 0.1413
new loop7(l ) —11(6) #1(6). The area enclosed by the 23 1.5852 0.1912 0.1911
two loops is the same, sincEis area preserving. It is pos- 25 1.6614 0.2376 0.2378
sible to estimate the phase-space area of points igitat 27 1.7327 0.2814 0.2814
outsidel;,,. In the worst case, the area occupied by such 29 1.7989 0.3217 0.3220
“turnstile” points is proportional toe®?, which is a factore 31 1.8599 0.3592 0.3593
smaller than the area df,, itself. If the turnstile area is 33 1.9152 0.3924 0.3932
much smaller thark, i.e., if kb®><1, it is reasonable to be- 35 1.9638 0.4243 0.4229
lieve thatl;,, is a good approximation for the purposes of 37 2.0010 0.4461 0.4458

guantum mechanics. This is trieven if no true invariant
loop existsOf course, if a true invariant loop exists, it may
be possib|e to make a Correctiomm, i.e., tofind a higher- of Eq (5), and not to the numerical solution of the Helmholtz
order approximation to the invariant loop such that the turnquation. The question of how well the operator corre-
stile area is even smaller. This would then allow us to takesPonds to the billiard has already been addre$8gd
kb®=1 and still obtain good results. The results are quite good, that is, the errors are small

We thus see that the libration states wih<maxV, are ~ compared with the separation of the levels. The separation is
to be identified with the resonance islands about the stablgf order
fixed points. The rotational states witfy,>maxV are dis-
tortions of the unperturbed invariant loopg,=const. If Ke(Ems1—Em)= V. (26)
E,>maxV, this distortion is small. However, this approxi- . .
mation breaks down at some stage because there will be '_I'he energy levels are given by choosing values kf
higher resonances which must be taken into account. Which solve

_ o w(k)=2mn. (27)
E. Energy and quasienergy quantization

We have seen that there is a WKB quantization of thelhis has solutionk=k, ., as for the perfect circlésee Table

approximate classical constant of the motig. This leads ). [For AR=0, o=27n reduces to R+m?/k+wm=(n

to an expression for the quasienergyin the circle case, of —31)2m, wherem is the angular momentum. This is equiva-
Eq. (7), lent to Debye’s approximation to Bessel’s function, valid for

k large andm/k small]
o= w(K)=2K+KeE,+ wy+ 7/2. (25 For fixedm, the variation ofw with k from the first term,

) ] . ) . 2k, of Eq. (25 dominates. Thus we have
Table | gives a comparison of numerical quasienergies with

those given by this formula for a number of states. The nu- Kn+1m=Kn,m+ . (28
merical method used is that introduced in H&2] to solve

the standard map. Starting with an approximate wave func- The error in the determination of a given energy level is
tion, a long time series is obtained by applying Theperator  not, however, small in comparison with the mean spacing in
repeatedly. Fourier transform of this series yields the eigenenergy ofall the levels. The levels so far found are a small
phases and eigenfunctions. Theoperator can be applied fraction of the levels in a given energy range. There are
very efficiently if it can be factored into a part dependentlevels belonging to larger angular momenta and smaller ra-
only on#— @', and a part whose phase is a sum of a functiondial wave number in the same range. In term&,ahe level

of 6 and a function o®’. The latter is not strictly true for the spacing of all the levels is aboutk2/which is the order of
nearly circular billiard, but it is true to ordés®. Note also the size of the errors committed and is the order of the ab-
that we are comparing our method to the numerical solutiorsolute error of a given level.
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TABLE II. Energiesk with different quantum numbens, but “chaos assisted tunneling[25].
the samem=11, computed numerically and found solving Egs.  The wave function so far found contains only small angu-

(25) and(27) (k7). € as in Table I. lar momentum components. This can be seen explicitly in
angular momentum representation, determined schematically
n Ent4/m k numerical Kpr from the integral
319 1.0108 998.3207 998.3213
318 1.0128 995.1784 995.1789 = J dO[En—V(6)] ¥ explik Vef (8)—il 6). (29)
317 1.0148 992.0358 992.0364
316 1.0169 988.8934 988.8940 If kye>1, SO may be employed. Then, it is found that only
315 1.01%0 985.7509 985.7515 the neighborhood of the angles solving
314 1.0210 982.6085 982.6090
313 1.0231 979.4660 979.4666 kyef' () =k\eVE— V() =I (30)
312 1.0252 976.3235 976.3241
311 1.0273 973.1810 973.1816 contribute appreciably. A range df centered roughly at
310 1.0294 970.0387 970.0392  ky/eE,, and of width of orderk\e maxV can satisfy this

condition, sokye maxV is a sort of localization length for

_ o this kind of wave function. Note that only librational states
It would be nice to have a theory giving the energy levelsf the lowest resonance have much overlap with zero angular

with absolute accuracy less than the mean level spacing, ¢fomentum.

course. Primak and Smilansk23] have discussed how this Outside this range, the angular momentum components of

might be possible within the framework of quasiclassics,ihe wave function decay exponentially for smodthFor the

even though the errors made in arriving at Theperator and  gtadium caseV/=|siné|, it may easily been seen that the

doing stationary phase integrals are of orderThis, how-  gecay is ag 4, rather than exponential. This makes it nec-

ever, involves finding the mean density of levels to bettelassary to use nonstandard definitions of the localization

than leading-order accuracy by a separate calculation, andngih[16,19,2( if statistical results are to be calculated.

cokr)nbining it in a particular way with sums over periodic  Carrying out the integral of Eq29) gives an expression
orbits.

Nevertheless, the results we have obtained are very useful -
and contain nearly all that is desired. The energy levels are =2 [V (0] Y2 expil| kyef(8,)—10,+ vag |
classified into groups. Matrix elements of smooth operators ba
are large only between levels in the same group. The error is
small compared with the spacing of the levels in the Same 1 are 0. are the solutions of Eq30).
group. The overall statistics of the levels on the scale of the Noticae that, if as expected/’ has different signs at the

mean level spacing as well as long-range correlations of €MYitferent 0., there will be an additional Maslov phase index
ergy levels are also given correcfig4]. v, distinguishing the two solutions. Also notice that the sin-
gularity of the prefactor at the classical turning point in
F. Wave functions and localization angle, wheré/(0)=E,,, has disappeared. Instead, the angu-
The “wave functions” are also given to good approxima- !ar momentum regions which mak€ vanish, which are the
tion, as we showed above. Of course, there can be an acddring points in the angular momentum representation, are
dental degeneracy between energy levels coming from smafingular, and should be treated by a technique going beyond
angular momenta, such as we have discussed above, and &€ first WKB approximation. This shift of the region of
ergy levels carrying large angular momenta, which we willbreakdown of the leading WKB approximation under Fourier
calculate below. Then, the true eigenstates will be some agfansform is the basis of Maslov's treatm¢26] of this sub-
preciable admixture of large and small angular momental€Ct: _ o
Lazutkin’s rigorous results also allow for this possibiliy. The solutions thus found arecalized in angular mo-
However, the matrix elements of tHE operator between Mentum space. From the point of view of KAM theory
widely different angular momentum states are exponentiallgnd perturbation theory, this is unremarkable. First, the
small. This means that such accidental degeneracies will B§AM theory predicts that the classical motion is also
rare. localized as in Eq.{30). Second, matrix elements of the
In the presence of symmetries, there will be degeneraciel OPerator in the angular momentum representation are
which are exact in the absence of the exponentially smagmall away from the diagonal. In fact, considd.
coupling. An example is the states associated with the peri=(27) "1/ fdod6’e " T(9,6")e' ?", where (—I")/k is
odic wells discussed above. In the presence of time reversaf order unity. The #’ integral will be stationary near
invariance, the states associated with positive angular maS,(6— 60')/d6=7#l1", and theé integral will be stationary
menta are degenerate with those of the corresponding negaeardS,(6— 6')/dd=*#1. Thus, there is no stationary phase
tive angular momenta, again with very small splitting due topoint for this rapidly oscillating double integral, and we can
tunneling between the two momentum regions. If desiredconclude that the integral is very small.
this splitting can be estimated within the framework of our  Such a band diagonal matri; , is studied in localization
theory. This is not entirely trivial as it requires a sti®4] theory [22] and is effectively the subject of the papers
of “resonance assisted tunneling” which is an analog of[16,17,19,20 cited earlier. Since the classical long-time be-

(31)
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havior is diffusive, in the non-KAM cases, the mechanismbig, or it is sufficiently far from such a multiple. It is the job
for localization was not obvious. If stationary phase argu-of the theory to tell us what “very close,” “not too big,”
ments are sufficient to get the width of the band, as we havand “sufficiently far” mean in detail. The resonant case is
assumed, the problem is solved. The cited papers are cothe one wheré, is “close” to a rational, the KAM-set case
cerned with the non-KAM case thateM’? is sufficiently  has®, “far” from a rational.

large that stationary phase breaks down. The first case we deal with is that of a resonance of period

It should be emphasized that our whole theory is based og, which involves destruction of the original invariant tori
the assumption, validated self-consistently, that the eigenand their replacement by new tori with a different topology.
states are localized in angular momentum. These are represented on the surface of section by a pgriod
island chain. The second, nonresonant, case deals with in-
variant tori which are somewhat distorted by the perturbation
but which keep the same topology.

The full two-dimensional wave function can also be found In the resonance case we consider states whose angular
in WKB approximation. This is quite interesting and will be momentum components are not too far frogg where the
the subject of a further communication. The basic result ideading stationary phase point correspondingl tol , is
that the full wave function¥(r, #) is a generalization of the @, Note thaty will not be 2m-periodic sincel 0q IS Not
wave function used in the Born-Oppenheimer theory. Ingenerally integer.
other words, for the case considered in the present section, it The ansatz made before,
is something like¥ (r,8)=®(r;0) y(6), where the “fast”
variable isr and the “slow” variable isf. To leading ap- Y=expikbf(6)), (32)
proximation, thed dependence of is parametric: deriva-
tives with respect to thé dependence ob are negligible.  does not lead to a solution. Indeed, expanding about

It is not too surprising that the present method is related tgy oq, We do thed’ integral and find
the adiabatic approximation. Our method of stationary phase

G. Adiabatic approximation

systematically orders the phases appearing in the problem by explike[cZT' (0+ @ )2+ L,(6,0+0 )]}
how rapidly they vary. The Born-Oppenheimer approxima- P P
tion distinguishes between rapidly varying and slowly vary- =g laglo exp{ikb[?(&) ~f(o+ Opx 1} (33

ing coordinates. In some cases our method is exactly equiva-

lent to Born-Oppenheimer. In other cases, our methodHerec is determined from the second derivativeSf. The
produces adiabatic invarianf40]. These have in the past phasea is obtained by doing thé’ integral. To satisfyT
been used to quantize certain stdt&s,27. In other cases, =z~ﬂ we must require

we obtain a generalization of the standard adiabatic approxi-

mations. T(0+0,4)=1(6)+const (34)
IV. HIGHER RESONANCES and

We turn to a discussion of the states wheig=expil 6,
with |I|>1. As we have just remarked, such a state cannot
communicate directly via th@& operator with its negativé

cX(T)2+L,(0,6+0 ) = const. (35

. ) ; These two conditions cannot in general be simultaneously
counterpart. It is true that time reversal symmetric SyStem?ulfilled Equation(34) implies thaff' is q-periodic, i.e., pe-

will be symmetric undet— —1, so that true eigenstates will dic with i0d® - but onl ial choi f pert
be an even or odd mixture of these states. However, the evd{fPd!c With PENodw e, but only a special choice of pertur-

and odd eigenstates will be practically degenerate, and at\i/sn Lﬁ in Fq' (.35) will behq-periodic, igqqékz'
can consider one sign of angular momentum only to get the V/€ therefore improve the ansatz and take
main effect.
Suppose we wish to find eigenstates centered near angular
momentuml. One way is to reduce the problem to the one . L
u way 13 u P Introducingd= —2S4(0 ) simplifies later formulas. Treat-

just solved by making a sort of gauge transformation, in, 5 pg/ = )
, ) . _il(o-0'y3 ~—~ ing b“f, as slowly varying, in this order of the calculation,
which the eigenstateg—e" "y, T—e T, and Ty

i > we find the conditions
=. We may then assume thetis slowly varying.
There are some complications in this case as compared f1(0+ 0, =f1(0)+const (37
with the case wherke=0. First, to leading order, the station-
ary phase point is given bySy(6— 6')/dé=1/k, namely at and
60— 0'=—0,, say. However®, has no particular relation- 2
ship to 2, that is, it will be an irrational multiple of 2, F2(0) = f2(0+Opg) =f1"+ Wpo(6) —Em, (39
unlessl is specially chosern(The negative sign in the defini-
tion of O, is purely for orthographic conveniengéf | is an
integer, this cannot happen except at special symmetry vaj- b2(6:0+®pg)/d. The constant,, leads to a phase
ues such a=0. deEp. _
There are two possibilities. Eith@, is very close to a Define theq average of a function of angle biy,(6)
rational multiple of 2r, 27p/q=0,,, whereq is not too  =1/q2'_;F(6+r0®,,). The Fourier components &, are

Y=explikd[bfy(6)+b2f,(0)+---]}. (36)

where E, is a constant to be determined ami,q(6)
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just those offF with all components whose index is not di-
visible by q discarded. Making g average of Eq(38) leads
to

0.71 |

f1==VEn—Vq(0), (39)

whereV, is theq average ofW. 0.66 -
The functionf, cannot be completely determined at this |
level, since an arbitrarg-periodic function can be added to ;
it and not affect Eq(38). Calling Vpq=W,q—V,, we can 0.947 -
solve for the remaining part of,. This function has no .
Fourier components whose index is divisible dpyThe solu-
tion of f5(0) —f,(6+0,,) =V can be made by Fourier
transform of the equation. An explicit solution can also be [

1k

written 0.937 |
] n 2n
-1 gq-1 <]
f2(0)= T 20 erq(0+r®pq)_ (40 FIG. 5. Approximate and exact invariant loops at the fourth-

order and twenty-eighth-order resonances. The valuei®0.05 in

This suggests making the following transformation. Let(®:(b) and 0.01in(c). 7is 0.7 in(a),(b) and 0.19 in(c). (a) includes
~ _ ikedfy? q der th di # the corrections to ordel®, while (b) and (c) are correct only to
w_.e Y an con§| er the corresponding operaibr  , 4erp2. Thus we have verified that the main discrepancy between
which may be approximated by

(b) and the exact loop is accounted for by the next-order correction.
Higher period resonances have relatively, although not absolutely,

A [ kd ikd i i ; i
T(0,0)= 5 ex;< 2ikd— 7502) bigger corrections from higher orders {E.
X explikde[ Wpq(0) + f2( 0+ 0 pq) — f2(0)1}. viations are apparently of o.rdeb3. Of course, ifkb? is _
@ small, the quantum results will not be affected by the devia-
tions.

_ The casepg= 3,28 shows an impressive set of wriggles
The second exponential is exeV,). If kde is small, we  coming from f,, which are quite well predicted theoreti-
expandy as in Eq.(12) above. Thusy solves the periodic cally. We have not tried to find the “best” valug,, corre-
potential problem with potentia¥, and effective Planck's SPonding to a given classical numerig|,, except by trial
constant d\/e. and error. This may con';rlbute somewhat to the dlscreparj—
If kde is of order unity or larger, the argument goes Ci€S- The islands are of different shape, however, and vary in

through as before, so that we have obtained the solution tB€ight from one island t°2 the next. These3 effects cannot be
the resonant case. This also gives the prefactors, as befordé&Produced in the ordéeb” but are ordekb” effects.

We show in Figs. 8)-5(c) some invariant loops for
higher resonancepq=1,4;7,28. The numerical loops ob- 0.2
tained by iterating the SS map are compared with the theo-
retical |, = pq+bf] +b?f).

There are several things of note. First, the contribution of
f, becomes relatively more important for highgr This is

for two reasons. Most obviouslyeV) V2 systematically be-
comes smaller with increasing, and eventually becomes
smaller thare, so that the small resonance islands ‘float’ on
a relatively large “wave” supplied byf,. Second,f, can
itself become rather large. This can be seen from formula
(40), which can become fairly big if the terms in the sum add
“in phase.” This effect is most pronounced near a large

/
wexact

resonance island, e.g., @=2. Then the termef, forp/q |  _____ W
. . . (b) semiclas

slightly greater tharg with q large must be almost as big as 03

Jef] for q=2. 0 /2 n
Another remark is that higher-order terms more generally 9

are relatively more important for large This can be seen in
the results. These dEV'atlons 3are apparen.t n ,th',s case ?ésonance, withk=4032,e=6.79x 10~ *. The theoretical approxi-
rather largeb=0.26,b"=0.07,b°=0.02. Again this is be- 516 wave function isy=coskdbf)sin(6+kdif,). The rapidly

causeV is becoming smaller, while the higher-order correc-varying dependence d is removed by locally averaging sinl
tions presumably remain roughly constant. The observed déa) and ¢ coslé (b).

FIG. 6. The exact and approximate wave functions for the 1,3
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In Fig. 6 we show a quantum state for the 1,3 resonancesimplest cases, but is tedious for more complicated cases.
What is plotted is, that is, the rapidly varying factor For example, the ordey resonance of the standard map for
expil 6 is removed. small e will have width parameter proportional &/, since
the effective resonant coupling ig ¢os#)9. Cases where the
Fourier expansion oAR is a finite Fourier series will have a
rather complicated condition which is difficult to treat in

The quantization conditions are somewhat modified, sincgienerality.
the central angular momentuyy, is not usually integer. We  Analytic perturbations usually have Fourier coefficients
require that expl ,,6-+ikdbf,(6) ] be 2m-periodic. For the ro-  which drop off exponentially with index. This leads to an
tational levelsE,>maxV,, we have a modified quantiza- estimatel ,,~c, with c less than 1. It>¢, we can expect

A. Quantization conditions

tion condition that the treatment given above is adequate and the leading-
) order expression for the resonance is proportional/¢o If
dOVE —V=2m(m+8 /kbd, 42 not, we elt.hgr have to work out the h|gher-order effects or
fo m m ) 42 take k sufficiently small that we can ignore the resonance
entirely.

where — ¢ is the fractional part of . Finally, there are the cases with nonanalydic, whose
If there are solutions of Fourier coefficients drop off as a power, say. The billiard

, AR=|sinf hasV,~q~?, for example, where KAM theory
m-+ 7/ oh — breaks down completely. We can generally expect our
kbd O dONEn=Vo(6)=m(m+ ), “3) leading-order solution to be valid for these cases. In this

case, the entire phase space is best regarded as filled with
where the integral is between turning points straddling aesonancef28], leaving no KAM set.
minimum of the potentialy again being the Maslov index,
there will be librational solutions repeatgdimes. There are
thenq nearly degenerate states, and the phase shift from one C. Close to a large resonance
well to the next will be slightly different tha® , in such a The following issue is to some extent still unresolved.

way as to make the total wave functionrzperiodic. Supposé/, is sufficiently large that Eq42) holds nontrivi-
These quantization conditions make the area of the l00pg)y " consider, for example, the resonance labeled 15,32 in

an integer number multiplied by Planck’s constant plus the_. — . .
correction due to Maslov indices. Thus, it is equivalent t(ﬁ:'g' 2. For values oEy,>maxV,, the predicted rotational

o invariant loops are well described by the low order resonance
EBK quantization. formula, aIthpough that formula dogs not give higher-order
resonances. Assumirtgy, large enough to expand Vh , the
] . ] invariant loop is given bybf;+ b2f2~b\/E_m(1—%Vq/Em)
The crucial scald,q of Sec. ID is usually provided by | p2f, This may be shown to approximate the nonresonant

B. When the resonant solution is applicable and needed

Vq, which provides the estimate solution, also calledf, but for a nonresonant value dof
_ found in the next sectiof24]. However, even if one is quite
I pg=max{Vg|. (44  close to the separatrix, where one expects the resonant for-

. mula to be best, the resonant or nonresonant formula at the
We assume without loss of generality thg has vanishing appropriatd value is not bad. Even the formula for a higher-

mean. order resonance which seemingly lies in a region strongly
If librational states exist, then we clearly need the reso-affected by the big resonance does qualitatively quite well,
nant solution. This requirel%qzqzlkze. although there are some small discrepancies.
If Vq is very small, the smallest rotationg}, is of order This seems to present a contradiction. Close to the big

E.~(Kbd) 2. Thus, if|pq>(kbd)*2 we cannot neglect it. resonance, e.gp=1, q=2, a secondary island chain from a
If 1,4 is much less than this value, we can negiégtand the high-order - resonance fOHOV_VS wel . a  loop glve.n .by
states in this angular momentum neighborhood are candRVEm—V2 and also a loop with seeming smaller variation
dates to be treated by methods valid for the KAM set. ef,, corresponding to a resonanpe. However, according
We remark on several cases which are distinguished bip Ed.(40), f, can become quite large for largewhich can
the way the Fourier components b§( 6,0+ © ,,) behave. ~ compensate for the fact that< Ve
For the example of a deformed circle AR is a pure low
harmonic, or sufficiently close to one, e.AR=cosé or V. NONRESONANT CASE, QUANTIZATION
AR=cos , thenV,=0 for q>2. Of course, it is immedi- OF THE KAM SET
atgly rec_ogmzed that Fhese cases are to first approximation a |, nis case, we start with a value of integer angular mo-
shifted circle and an integrable elllpsg, respectlvely, so th entuml, such that®, is not resonant. There is no terfy
they can be transformgzd to a perturbation about an integrab d the solution begins witf,. The condition forf,, is (for
system with perturbation peiametér rather thane. the deformed circle
From our perspective, i/, vanishes or is sufficiently
unusually small, one should determine if some higher power
of e gives resonant behavior. This is not hard to do in the fo(0+0)—T(0)=AR(0+0|)+AR(H). (45)
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FIG. 7. The golden mean invariant torus of the smoothed bil- k1. g Numerically exact and our approximate wave functions
liard, approximated to order (solid line), cos%®|+ef§(0), and nu-  for the parameters of Fig. 7. The factl’ has been removed and
merically exact classical mafglots, 20 000 iterations Parameters the real part of the wave function is shown.
aree=10"4 7=2X10"2. The inset enlarges a cusplike portion of
the figure to display the degree of failure of the approximation. Thisinstead of expandingS, to second order in56=6"—6
torus has®,=27w=m(5-1), and it is “farthest” from alow- @ _. f, to first order.f, to zeroth order, and neglecting
order rational. Such a torus is not really smooth, and is not describfg’ we expand, step by step, to the Mth order,f, to the
ablg by a convergent power series. !t is “.transversely smooth,”(M —1)th order, ...,fy to the zeroth order, and neglect
whlch_ is enough to control mathematically its proper{igs _One 1, whereM =2, andkbM+1<1. The perturbation, which
can pick out the closest resonances, e.g., 5/8, 8/13, etc., given by tw

! 2 ! .. i -

Fibonacci series. Presumably, a$s decreased, this is the last torus N may calleS,(6,0") + e7S4(6,6) + ! IS. expanded'ac

T cording to the same rule. The ordecalculation determines
remaining in the KAM set.

the nonperiodic part of, and the periodic part of, _;.
The resulting integral is not done exactly, but by station-
ary phase in the neighborhood &= 0. The stationary point
is regarded as shifted hy® ,, which can be expressed as a
1 Q041 power series irb. Thebr-term iq thi§ shift is_bigger than the
fo(0)=— >, ————AR "’ (46)  Width, 1k, of the effective region in théd integral if kb'
27 e —1 >1. A sample calculation is done in the Appendix. Figure 5
shows a case where ordeb® corrections are included. Evi-
This sum will be well behaved, providefiR, drops off  dently, turning-point corrections are important in this order,
sufficiently rapidly withr, and is small when the denomina- but we have not bothered finding them.
tor is small. The denominator is small, wherq and®, is There are interesting questions about how this method
close to a rationa® 4, with g not too large. The denomina- breaks down if there are unusually large derivativesSpf
tor then approximateg q®,—2p). If this condition does but we shall not address them in this paper.
not hold, the resonance treatment of the preceding sections

This may be solved in terms of Fourier component&,
denotedAR, . The result is

must be employed. . . L VII. OTHER PERTURBED INTEGRABLE SYSTEMS
At this order of the calculation, there is no shift in the
energy levels for the KAM set states. There are an infinite number of integrable systems whose

Formula (46) has been tested numerically. In Fig. 7 we perturbations can be studied. Examples in the literature in-
plot f5(6), the derivative of Eq(46), and compare it with clude coupled anharmon{@9] and Morse oscillator$31].
the numerical invariant loop, obtained by propagation of arfOur method must be modified to study coupled harmonic
orbit. It is apparent from this that the invariant loops are notoscillators, usually studied by the Birkhoff-Gustavson
totally smooth and featureless. KAM theory controls the sin-method[6,33], since the winding number is constant in that
gularity of these loops, although they cannot be representeefse.
by a convergent power series. In Fig. 8 we give the corre- Rectangular billiards in a weak magnetic field, or with

sponding quantum state which captures most of the numerAharonov-Bohm flux lines, have been of great recent interest
cally exact results even in this leading order. [34]. These billiards can also be solved by our method, with

new, unexpected, and rather striking results. Basically they
show that the purely quantum phase can give localization
even though the classical mechanics is totally unaffected.
We briefly mention how one goes to higher order in theAlthough Anderson localization has long been known to be
calculation. Some details are put in the Appendix. We conan effect of this kind, to our knowledge this is the first ex-
fine attention to the resonant case. ample where analytic formulas are given. This case will be
Basically, one makes the ansatz published elsewhere.
Another interesting billiard is the weakly deformed rect-
y=exp{i[lpq0" +k(bf+ b2f,+b3f3+-- )]} (47) angular billiard[35]. As an example of recent intergd&6],

VI. HIGHER-ORDER CALCULATIONS
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-a 0 a x
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FIG. 9. Half of the stadium billiard which is compared to the
straight channel, an integrable system.

consider the trapezoidal billiard, whose sides consist okthe
axis, 0=x<a, and the vertical segments=</<b—e (x
=0) and O=sy<b+e€e (x=a), and the slightly sloping seg-
ment connecting the upper ends of the vertical segments.
The results are much the same as before. We just mention FIG. 10. The ice cream cone billiard with parameger /4.

what is found foreV,. This potential is periodic irx, with
period 2a/q. In one period, the potential is an isosceles tri-
angle “tent” of zero mean and peak absolute vakie?.
Note thatx is continued outside the physical region. This
continuation is similar to using action-angle variables for the®
problem. N _ ,

In fact, for any reflection symmetric perturbati?rR of S%x") KLECO +£(x)]. 49
the circular billiard, there is a corresponding perturbation ofget
the rectangular billiard, in which only one side of the billiard
is perturbed. V(X)=—Sy(x,x)/k

of the second derivative, as compared with the circle, means
that the attractive and repulsive regions of the potential are
reversed in comparison with the perturbed circle case. We
an approximaté, by

=0, |x<a (50
VIII. NO SMALL PARAMETER

In this section we briefly consider some cases where a =(Ix|-a)?, |x/>a. (51)

class of states of a system can be found, even though there is ,
no small parameter. We will give the details elsewhere. In W& l00k for a solution
fact, the first application of the present method was the dis- B :
cussion of a class of states which turned up in the context of ¥=explikf(x)), (52
ray splitting[37]. A second important class of states are th ; ; - P
whispering gallery modes, first discussed by Kel&f]. Our e\;v(r:((?;e:ff;s;()slo;fyl({()\zir’yln)g. One finds, upon approximating
method easily reproduces these results. Keller's method re- '
lies on first finding an adiabatic invariant. This invariant f/(x):im_ (53)
drops out of our approach as a by-product.
Consider the well known example of the standard stadiunthus, we look for a solution of a particle in the potential well
billiard [38—-40, which has a straight side of lengtla2as in  v(x), and with effective Planck’s constanti/f E,, is suf-
Fig. 9. The sidea is arbitrary, but not too small. We want to ficiently small, thenf varies slowly, and the expansion is
study the “bouncing ball” states which have low linear mo- jystified. The possibility of an emergent small parameter,
mentum parallel to these sides, but a higberpendicular  sych asE,,, allows us to use a perturbation approach.
momentum. These states remain between the parallel sides Of course, it is not difficult to extend these results to deal
and do not get out into the endcaps. with cases having an additional small perturbation. For ex-
Reduce the billiard to its upper half by symmetry. Take asample, the flat sides of the stadium might be given some
nominal integrable system the infinite channel of witRh  small wriggles. An example of this type that has been pub-
=1 as shown. We take as SS the upper boundary of thgshed[41] makes the radius at one end of the stadium bil-
billiard, and use positiorx, measured from the symmetry Jiard slightly larger than at the other end, so that the stadium
point, on the upper channel to label position on the surface ofiat sides are not quite parallel. Note that the periodic orbits
section. The billiard boundary is described by distagce change their mathematical character drastically if the sta-
from the upper nominal channek(x)=0,[x|<a, &(X)  dium sides are tilted. The periodic orbit, trace formula ap-
~(|x|-a)?2, [x|>a. The integrable action is, for states proach to these problems is rather diffici8g].

odd under reflection about the horizontal symmetry line, Another case, Fig. 10, which has been experimentally re-
alized [42] is the ice cream cone billiard, which is a unit
So(x—x") [, 1 2 k 2 circle for |6|>p, and a triangular shaped region fp#|
7 2K\ 14 7 (x=x") "= 2k+ 2 (x=x")*. <. This turns out to have essentially the same effective
(48) potential as for the stadium witk— #—#/2 and[ —a,a]
—[7=B.B].

States even about this line have the same action with an In these cases, our method turns out to be essentially iden-
additional termarfi, that is, theT operator has an additional tical to the results based on the standard Born-Oppenheimer
overall negative sign for the even states. The change of sigansatz used earli¢B8,40. For the ice cream cone billiard,
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the ansatz is a generalization of the customary one. Alternd=ourier methods then allow a determination of the funda-
tively, the full wave function we predict¥'(x,y), approxi-  mental frequencies, the;’s, and then the torus itself. This
mates the Born-Oppenheimer wave function. method is quite efficient.

Another large class of states to which our method applies  Although the SS technique is often used to display results,
is the region near stable period orbits. The tractability of thisit is seldom used as a calculational tool. The one exception
case has been recognized in previous work of course. FQ{e have found is the work of Noid and Marci#5). Indeed,
example, the Hamiltonian might be expanded near the stabigey ysed two surfaces of section, SS1 and SS2, which cut

orbit and then be quantized. the invariant tori in topologically different ways. By numeri-
cal propagation of an orbit, they found the invariant lobps
IX. COMPARISON WITH PREVIOUS WORK andl, on these two SS. EBK quantization makes the area of
ON COMBINED QUASICLASSICAL AND the loops take the formrea,=#(n,;+3), area,=#(n,
PERTURBATION THEORY +3), assuming the usudl for librational states. In two di-

mensions, the SS, and thus in effect the orbits, depend on
] ) two parameters, one of which is taken as the energy. These
_ Combined QCA and PT has been used and studied exteparameters are varied until the areas of the loops have the
sively. One general scheme is to find approximations for theynaye relation to integers. Noid and Marcus obtained nu-
classical invariant tori, either analytically or numerically, and merically good results for the energy levels. Use of SS’s
then use EBK methods to quantize them. gave some advantage computationally. The method does not
An important method is that of the Birkhoff-Gustavson ey on a small parameter, but only on the existence of suf-
normal form[6,33]. This is closely related to the Darling- ficiently simple invariant loops.
Denison form[43]. In this case, the usual starting point is A different kind of effort[7,11,12,29,3pstudies the tran-
two or more harmonic-oscillator Hamiltonians coupled by gition away from the Berry-Tabor trace formula, valid for
terms consisting of_polynomlgls in the dlspla_cements _an%ompletely integrable systems at=0, and towards the
momenta. Successive canonical transformations eliminatg,iwiller trace formula, usually considered only for hard

the coupling terms, order by order, in favor of a normal formcpa65. We will show the relation of our work to that in a
Hamiltonian, which basically consists of products of powersgi,re submission.

of the original harmonic oscillators. There are also rigorous mathematical results in this field

The result is complicated in the sense that computer alggs) e are not sure how to make a simple statement of what
bra is needed to find the normal form, and in addition, a Padgas heen rigorously proved. It seems that Lazutkin has suc-
technique is employef44]. Indeed, the result gives an ap- ceeded in quantizing the KAM set at the EBK level, and has
proximation toall, or some large class of invariant tori, N0t gp,\wn that the number of levels found is correct. The wave

just the intersection with the SS, ome single formulaThe  nctions are also correct, up to the possibility discussed be-
entire torus is needed to do standard EBK quantization. |5\ of accidental degeneracy.

Since we find the invariant loops as a by-product of our
approach, it can be regarded as a variation of this already
existing work. However, we remark that solving the square
billiard in the presence of a flux line could not be done by In addition to the subject of magnetic effects on square
Birkhoff-Gustavson, because thegeno classical perturba- billiards [34] and deformed rectangular billiard86], there
tion. Our method gives localized states which are similar toare a number of papef$5-1§ in the recent literature which
new, quantized, resonant tori, but these new tori do not exidtave uncovered interesting phenomena in this perturbative
at the classical level. case. Indeed, it was this literature which led us to develop

Also, our method gives much simpler results. We need tdhis theory. In these papers, the basic object is the weakly
find only the invariant loops in the surface of section, and nodeformed circular billiard described by the functidrikR(6)
the whole torus to which an invariant loop corresponds. Weas in Fig. 3. The older literaturg85] treats such boundary
do not need to integrate around the torus from one intersegerturbations in more ordinary quantum perturbation theory,
tion with the SS to the next. Rather, knowledge of the phasealid only for kye<1.

o(E) enables us to complete the quantization. Thus our Some of this work has practical applications in the con-
method has the usual advantages of using the surface of sestruction of tiny lasers with almost circular resonant cavities
tion. Not only that, we havelifferent formulasfor different  [15]. The caseAR=cos 2 [15,18 has some special features
regionsof angular momenta. Thus, our results are comparain that a nearly circular elliptical billiard has this as its
tively simple to derive and write down, since it breaks up theleading-order term, and such a billiard is integrable. Higher-
problem into small pieces, rather than finding one compli-order corrections are quite interesting since they are respon-
cated formula describing everything at once. sible for island chains, etc. That is, this case can be thought

Although discussion of the convergence of the series i®f as an integrable elliptical billiard with leading perturba-
given in the context of Birkhoff-GustavsdB3], mention is  tion proportional toe?. We reserve a more detailed analysis
not made of the relationship of the small parametédo 7. to future publication, however.

Since the same formula is used to describe all the reso- Other work is more concerned with localization theory
nances, which have different scales, etc., that discussidi22]. Non-KAM cases were studied which are classically dif-
would be quite difficult. fusive, i.e., technically the systems show hard chaos. The

A related though more numerical approach is to propagatexistence of a rather complete and analytic solution for large
numerically an orbit which lies on an invariant tor[&1]. ke was not suspected, so statistical studies of localization

A. General theory

B. Recent applications
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and energy level statistics were undertaken with supportinglown in some detail, in cases such as the stadium billiard.
heuristic arguments. In particular, the nearly circular Buni-Working out and verifying higher-order effects in detail is of
movich stadium billiard 16,19,2Q was studied. some interest. It would be good to extend the method to
It is rigorously known[16] that because of the lack of a arbitrary surfaces of section rather than the special ones we
second derivative, the long-time behavior is diffusive in an-have used. A number of interesting problems are raised by
gular momentum space and there are no invariant tori at alkases such asR=cos 2. Other perturbation systems are of
A somewhat related case is to tak® as a “random” finite  jnterest, for example, coupled quartic oscillat28]. It is no
Fourier series constrained to hake maxima and minima  44yht possible to extend the method to weakly coupled har-
[17]. There is a third, large, parametér whose relationship qnic oscillators. A general theory of whispering gallery

with k and e must be specified. The possibility of large s in sufficiently smooth convex billiard89,37 might
higher derivatives of the perturbation can modify or invali- be possible, but would require a betfEroperator than we
dat_?hKAM thecl)ry.t tin th N . fh have used above, since diffraction effects become important
€ general Interest in the quantum version of theSe Norg, . g4t classical skips between nearby boundary points.
KAM cases has been to find changes of wave-function IOC.alExtension tod>2 may be in principle possible but in prac-

|tzat|or}[ l:t)ﬁhawor as a functut))nlof the p?ragjgters,tapd to In}.ice is likely to be difficult. There are interesting numerical
erpret these regimes as belonging 1o dilterent ypes o esults, for example in ray splitting billiard87], that sug-

gynlan:!cal Ipc?kilzatmn. At s;)mtet Iarlge enOlIJghthz Ia:rgtg est it might be possible to solve the case tiai or more
ﬁnva Ives in ;ase c(;’:\sests %r t'o ptﬁy a robe, akn ds a |on_|<'_:1 rbits contribute to a specifit operator, requiring a sort of
phase arguments and perturbation theory breaks down. r?ﬁatrix version of our theory. Finally, it could be hoped to

contrlbutlgn. of our paper 1 for_values dxfless. than this use this technique to study states in pseudointegrable sys-
characteristic magnitude. A detailed study of this breakdowqems, which have nonisolated orbits that, however, do not lie

is underway. } on a simple torus in phase space. Many of these projects are
However,to some orderin \/e, for the resonances, ap- underway{24].

proximate invariant tori continue to exist, and we can find

them and quantize them. If these tori break down at order

then forke'’?< 1, the quantum system acts as if the tori exist.

For largerk, qguantum mechanics can “see” the dissolution Weakly perturbed integral Hamiltonian systems in two
of the tori, and our theory no longer applies. This transitiongimensions have been much studied, both classically and
and its interpretation is the theme of several papergyasiclassically. Up to now, the methods employed, although
[16,17,19,2Q _ effective numerically, did not lend themselves to visualiza-
This can also be interpreted as the fact that quantum m&gon and simple formulas. By using surface of section tech-
chanics and it§ limiting classical mechanics may have Q_Uit‘?qiques as generalized to quantum systems by Bogomolny,
different long-time behavior. The two approximately coin-\ye optain results very much like familiar results from WKB
cide up to a timer;, a time usually interpreted as/A, theory, at least in the leading orders.
where A is the mean level spacing of the quantum levels The relation of the perturbation parameterto the di-
which are appreciable in the initial wave packet. Beyond thisnensionless wave numbkr or equivalently to ¥/, is cru-
time, the classical behavior is irrelevant to the understandingjs| The size ofke, the number of wavelengths in the
of the quantum behavior. Thus, the long-time classical beghange of a billiard boundary, is not especially important, for

havior, which is the focus of most classical theory, can b&egonant states. Rather, the main parametér/is Results
irrelevant unless it also happens to describe the short-timg,, quite simple ike?

: ) 8 Y is small. In that case, the derivatives
behavior,t<; . Quantum mechanics does not “care” if ot \he perturbation do not enter directly into the solution.

approximate invariant tori are indeed mathematically invari—rnis also means. of course. that for given snealthere can

ant. It only cares that the classical orbit stays close enough tg, quite large effects proportional té. For example, it is
a ttorl;JI_s r:otrhlong en:ought t?at phase interference effects 3ot enough that an optical resonator have “optically flat”
establish the quantum states. sides, if it is to approximate well a perfect square resonator.

An”expllanatlon[19,2(] “S?d n this context is “can- For nonresonant states, the sizekaf determines whether
torus,” which is a Cantor set invariant phase-space StrUCturSrdinary perturbation methods are valid or not

replacing an invariant KAM torus which has disappeared as A first description of what we have done is that we have

a par.ameter'|s changed. Can@B] can “trap” for a wh|le solved Eq.(5) in WKB and stationary phase approximation
classical orbits, thus influencing the short-time behavior. Thefor the wave functions and energy levels as a power series in

invariance of a cantorus is what makes it interesting and\/z or in e. depending on the phase-space region. We have
difficult in the classical context, but this invariance is of no * ™’ » dep 9 P P gon.

relevance for quantum systems. Insofar as cantori “explain”a.Crlterlon for whether the Seres fShOUId.tﬁé or €. To be a
the short-time behavior, they explain some of the quantunll)It more accurate, we find explicit solutions for the leading
integrability even in the absence of classical integrability.‘/z_amOI first few powers, and provide a procedure which
However, in our opinion, the existence of approximate in-rapidly becomes tedious, for the higher orders. In this paper

variant loops is a better and more complete explanation. W& concentrated on the leading order or two, and not on
issues of the breakdown of the series. The latter is related to

the degree of smoothness of the perturbation.
A second description is in terms of quantum perturbation
Several avenues for future work are underway. It will betheory. We do a quantum perturbation theory about an initial
interesting to see how the perturbation approach breakstate s=exp(l 6). However, unless/e/% <1, this is not an

Xl. SUMMARY

X. FUTURE WORK
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ordinary perturbation theory, but rathedageneratgertur-  shop “Quantum Chaos and Mesoscopic Systems™ contrib-
bation theory, in which of ordey/e/# unperturbed states are uted to this work. Other valuable discussions were had at the
mixed, in the resonant case, ef states in the KAM set Aspen Center for Physics. We thank F. Borgonovi, S.
case. This can be seen in Fig. 2, when it is realized tha€reagh, A. Dragt, B. Eckhardt, S. Fishman, M. Robnik, W.
unperturbed states are represented by action values spacedReinhardt, and A. D. Stone for stimulating conversations.
apart. So, we can effectively carry out the diagonalization of

the matrix mixing these states in this case. The fact that a APPENDIX: e?<h<¢e?
form of degenerate perturbation theory is needed was appar- o ! L
ently first pointed out by Shuryald6], in the case of reso- We indicate here how to find the resonant solution if

3__ 25 4 i
nances. Degenerate perturbation theory is usually a matter §f° =1, kb*>1 andkb’<1. We expa.ncBo about the nomi
diagonalizing matrices, but the quasiclassical approximatiof@! stationary poin® 4 to third order:

lets us avoid that. , "
A third interpretation of what we do, at least in some So( 6= 6")/fit1pq(6"=6)

cases, is that we are able to find explicit approximate formu- 1

las for the invariant loops. In other cases, we find adiabatic =So(Opg)/ it 1pq@pg— k7 86°+ gkddl593-
invariants. These loops have the topology of circles and are

invariant under the surface of section map. The loops are (A1)

found as a power series infor tori in the KAM set. We find
explicit formuli:\s/_for the new, resonant, invariant loops as
power series inje. We find explicit formulas for the sepa- N — 2 ,
ratrices in this way also. The loops can be quantized, in S2(6,6")=b7dV(6) +dV5(0)56] (A2)
essence by EBK theory, and the formulation then gives thgnq the ordee? term is
other quantization of the motion away from the SS. We also
have expressions for the scale of the perturbation around a S4(6,60")=db*V,(6). (A3)
resonant torus,,,. Having these formulas, we can find the
quasiclassical quantization conditions and the wave funcWe have normalized to the second derivativeSgfwhich is
tions. written in terms of the constart Note thatV; is not the
A fourth interpretation is that we have a generalization ofderivative ofV,.
adiabatic approximations like the Born-Oppenheimer The wave function is
method. This happens because we have constructed an order-
ing of contributions to the phases according to how fast these ~ #=exp(—g)expikd(bf;+b*f,+b3f3+b*,). (A4)
phases vary. It is also similar to multiple time-scale analysis,
We, however, danot find any stochasticity, or any sec- W& expand
ondary resonance phenomena, since these are smaller tha|f*|
any power ofe. This has the unfortunate implication that our
work does not shed much light on the quantization of mixed
chaos. It would indeed be surprising, however, if the quan-
tized wave functions of extended stochastic regions had
simple analytic expressions. In fact, mixed chaos consists of
three regions, a KAM-like region with invariant tori, a region : .
presumably strongly chaotic and treatable by the GTF and it¥ve know, and the part of, which has no Fourier com-

improvements, and a transition region between the two. It iionents which are multiples of We investigate the condi-

- : : : _Yions on the solution which arise at orden®.
}the transition region which has resisted attempts to quantiz The stationary phase point of the integral satisfies the

aThe ordere term is

1(0")=F1(0+0 )+ 80F1(0+0 ) + 5671 (6+0,),
f2(0")=f2(0+0,)+50f5(0+0,,), (A5)

Our results are simple and familiar on the one hand, bu?quatlon
rather complex on the other. That is, we obtain results of a
type familiar from standard WKB theory. But, the results are —5860+bfi+ 24d,66%+ bfi56+ b2f§+ b2V§= 0.
complex in the sense that the results of classical KAM theory

are complex. Various cases are possible depending on t . ,
choice of system. Since the quantum theory must follow thgﬁ1e last fgur terms are.of order, W.h'le the f_|rst two are of
rder b, since the leading expression fép is of orderh.

classical up to a certain level of approximation, dependin

on #, the quantum results must also be complex in this hus, we find
sense. 56=2bf!+2b%[24d,(f})2+ 211+ f5+ V5.
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- = A f3(0)— f3(0+0 o) =2f(f5—f5+V5— V)

2q:_vzq—flfl—§o|1(fl)2+f—,. (A7) P a
' andf_3 is determined by the next-order condition. Note that if
The part off; vanishing undeiq average is determined f; is double-valued, so i$5. It can therefore change the

from shape of the resonance islands.
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